

February 21, 2024

To: Contractors Holding Lincoln Street Bridge Replacement Packages.

Subject: ADDENDUM No. 1

Please note the following questions/answer and confirm receipt of this ADDENDUM No. 1.

- 1. Q1 AC Adjustment was shown in the contract
 - Yes there will be asphalt work leading up to the bridge on both sides and on the bridge therefore it is beneficial to leave this in for when asphalt placement is to occur.
- 2. Q2 Clarification of the 3 dates shown in the contract at 225 days, 270 days, and 365 days.
- Please note that these are correct. The 225 days from Notice to proceed is for substantial completion, the 270 from notice to proceed is for opening for vehicular traffic, and the 360 days is for final completion of the construction.
- 3 Q3 Allowance bid line item for testings
- Our construction inspector will provide field testing.
- 4 Q4 Request for engineers estimate
- Engineers estimate posted with Addenum
- 5 Q5 Sidewalk Material and Permanent Steel Casing for drilled shafts line item
- Additional line items has been added for Class AA concrete, Permanent Steel Casing for 3'-0" diameter drilled pier, and Epoxy coated reinforcing steel
- 6 Q6 Is there a specific bid bond form required or will a standard bid bond form work?
- No this will come from your surety.
- 7 Q7 There is not a signature sheet for an LLC, should we use the corporation signature sheet?
 - This is acceptable.

- 8 Q8 Request for Engineers estimate
- Please see attached
- 9 Q9 Request for Bid opening date be moved from February 28th, 2024.
- It has now been moved to February 29th, 2024 at 2 pm.
- 10- Q10 Are the attendees from the first pre-bid meeting eligible to bid if they didn't attend the pre-bid held on Wednesday, 2/21/24?
 - Only those at the pre-bid walkthrough on February 21st, 2024 are allowed to bid.
- 11 Q11 Are the permanent signs shown on plan sheets SPM-1 through SPM-4 required to fabricated and installed under this contract?
 - No our City Sign Shop will do all the fabrication and installation of the signs.
 - 12 Q12 Are the soils borings available
 - These have been included in the addendum.

Sincerely,

CITY OF CONCORD

Jamie Williams, P.E. Transportation Project Engineer

JMW/dah

cc: Contract File - Lincoln Street Bridge Replacement

Attendee Sign-in Sheet Lincoln Street Bridge Replacement Pre-Quote Conference

February 21st, 2024 11:30 A.M.

Name & Organization

Email

Phone #

Helsen Rengs	nroups@leconolinas.com	704 586 5272
Lee anterition Co.		
Jake Unn	Estimating or Lee Carolinas	704-207-5355
Lee Construction	Commaring of Lecturolinas	
Christopher McCray		/
Dellinger Inc	Chrismiciay@ dollagend	luc. 704-506-6627
Stephen Tate		
Dellinger Inc.	State @ dellinger-Inc	704-242-0677
Luke lackey		
E.S. Wagner	Mackey@eswagner.com	F64680-7218
Lee Bradley	N A C.	
Blyde Consumation	Lee. Bradly@Slytle construction.co	704-805-6323
Frank Fulp	frank@smithraw.com	336-705-0542
Smith-Rive, LLC		
KEVIN BURNS		
RE BURNS & Sins	Kevinere burns.com	704-921-8646

Attendee Sign-in Sheet Lincoln Street Bridge Replacement Pre-Quote Conference

February 21st, 2024 11:30 A.M.

Name & Organization

Email

Phone #

COLE CONDON	Cole. LON DON@ Thomas Convin	714-914-3362
Thomas Contrata	lom	211 111
Tyler Sigmon	Tyler@ Kemprisman construction	١.
Kemp Sigmon Construction		828-302-7018
Alex Sollivan	ASULLIVAN DINTEGROUPING	Can
NJR GOUD JAL	Asvocio (Septembrie)	704-726-0936
Ben Speiglats		
NJR Group Inc	bspeights@ningroupiacies	704.983-5285
·		
	,	

INVITATION TO BID

City of Concord Transportation Department Date: February 14th, 2024

Attendance at a qualifying pre-Bid conference of the project on February 21st, 2024 at 11:30 AM on site, at the Lincoln St. Bridge on the Lincoln Street side, will be required for a Bid submittal.

Sealed bids will be received by the City of Concord at the Alfred M. Brown Operations Center, Conference Room C, 635 Alfred Brown Jr. Court, SW, Concord, North Carolina 28026-0308 until 2:00 p.m., local time, Wednesday February 29th, 2024 for the Lincoln Street Bridge Replacement Contract.

At said place and time, and promptly thereafter, all bids that have been duly received will be publicly opened and read aloud.

The Project Information is generally described as follows: The work under this contract includes, but is not limited to, the selected Contractor performing all necessary work to complete the 0.11 mile of bridge and bridge approach replacement by removing the existing bridge structure, asphalt pavement, curb and gutter, and sidewalk, and constructing the new bridge structure, asphalt pavement, curb and gutter and sidewalk per the Bridge Replacement of Lincoln Street Crossing Irish Buffalo Creek plan set, and as discussed in the prebid conference, including mobilizations, demobilizations, all labor including special subcontracting, permits, licenses, certifications, handwork, fabrications, tools, equipment, all materials, miscellaneous hardware, any supporting hardware and software, consumables, preparations, adhesives, other items and incidentals, excavations and grading, hauling, traffic control safety operations, site security, security of the work, infrastructure removals and resettings, incidental infrastructure relocations, removal of any debris, cleanup, and disposal(s), seeding and mulching, testings, cleanup, and disposal(s), touch-up repairs, special subcontracting, permits, licenses, and all else required as necessary in accordance with the Contract documents to the satisfaction of the Director and the City of Concord.

All bids must be in accordance with the Contract documents on file with the office of the City of Concord Transportation Department.

Copies of the Contract documents have also been provided to plan rooms of Associated General Contractors and F.W. Dodge Corporation in Charlotte, North Carolina.

Copies of the Contract documents may be obtained from the City of Concord at the address stipulated herein.

Bidders must be licensed Contractors in the State of North Carolina. All Subcontractors must also be licensed Contractors in the State of North Carolina.

Bids will be received on a unit price basis.

A 5% Bid security must accompany each bid.

The successful Bidder will be required to furnish a 100 percent (%) Performance Bond (on form provided by

the City of Concord) and a 100 percent (%) Payment Bond as security for the faithful performance and the payment of all bills and obligations arising from the performance of the work.

The local government of the City of Concord does not discriminate in administering any of its programs and activities. The Contractor awarded the contract for the work will be required to assure that no person shall be denied employment or fair treatment, or in any way discriminated against on the basis of race, sex, religion, age, national origin, or disability.

In accordance with 1 NC Administrative Code 30 I.0101, it is the policy of the City of Concord that Bidders undertake good faith efforts to recruit minority – disadvantaged business participation in the work. With regards to this, please reference the City of Concord DBE Program's Policy Statement. Bidders will need to provide an affidavit of good faith efforts to comply with this policy as part of submitting a bid. However, no specific goals for DBE participation have been established for this contract. Firms proposed by Bidders as a participating minority and disadvantaged business with current certification by the NCDOT will be considered acceptable for listing in the Bidder's submittal of MBE-DBE participation.

The Contractor and all Subcontractors will be required to conform to the labor standards set forth in the Contract Documents.

The North Carolina Department of Transportation Standard Specifications for Roads and Structures (Standard Specifications) Latest Edition and the North Carolina Department of Transportation Raleigh, "Highway Design Branch Roadway Standard Drawings" (Standard Drawings) Latest Edition shall be used on this project in conjunction with the work. The Contractor shall obtain and hold a copy of said Standard Specifications and Standard Drawings, latest Editions. Definition of terms shall be as stated in Section 101 except where those that specifically delineate and apply to the North Carolina Department of Transportation and its Divisions will be synonymous with and applied to the City of Concord and its comparative Departments and those also as stated in Exhibit "A" of the contract documents. The Contractor shall also obtain and hold a copy of the City of Concord Technical Standards Manual for use in applications as directed by the Director or his designated representative.

It is an absolute requirement of the City of Concord that the project work site and work force be drug free and that associated individuals, including subcontractors, working on the project be free of prior or pending felony convictions, the qualifications statement should include a commitment to this requirement and an indication of the plan of the firm to ensure compliance with this requirement.

The City of Concord reserves the right to reject any or all bids, including without limitation the rights to reject any or all nonconforming, nonresponsive, unbalanced, or conditional bids, and will award to lowest responsible Bidder taking into consideration quality, performance, and time specified in Bid Form for performance of the work. The City of Concord also reserves the right to waive informalities.

If the Contract is to be awarded, the City of Concord will give the successful Bidder a Notice of Award within the number of days set forth in the Bid Form.

> (signed) Lloyd Wm. Payne Jr. BY:

Lloyd Wm. Payne, Jr., ICMA-CM City Manager

February 14th, 2024

To: Interested Contractors

SUBJECT: Solicitation of Bids

Lincoln Street Bridge Replacement

The City of Concord Transportation Department is requesting bids for the replacement of the Lincoln Street Bridge. Please note that this project is partially funded by Community Development Block Grant (CDBG) funding and has certain requirements of the selected Contractor under the Davis Bacon and Related Acts (DBRA).

There will be a Pre-bid Conference for the purpose of giving potential bidders an opportunity to ask questions and providing additional information about the project. To qualify to submit a bid, attendance at this conference is required. The Conference will be held on-site at the Lincoln Street Bridge on the Lincoln Street side at 11:30 AM on February 21st, 2024, weather permitting. (Call 704-920-5341 if further information is needed).

If interested, please attend the on-site Conference. Signed bids, un-separated from the Bidding Documents, will be received in a sealed package by 2:00 pm on Wednesday February 29th, 2024, in Conference Room C of the Brown Operations Building, 635 Alfred Brown Jr. Ct SW., Concord, N.C. 28025. Thank you for your consideration and if you have any questions with this solicitation, please call us at 704-920-5341.

Sincerely, CITY OF CONCORD

Jamie Williams, P.E., Transportation Director

JMW/DAH

cc: Project File: Lincoln Street Bridge Replacement
Mary Carr, Planning and Neighborhood Development

TRANSPORATION DEPARTMENT

EXHIBIT "G" GENERAL CONDITIONS AND BID FORM

Solicitations of Bids for the Lincoln Street Bridge Replacement

The City of Concord is requesting Bids for all necessary work to remove the existing concrete pavement, curb and gutter, rehabilitate the subgrade, and rebuild the road base with asphalt while constructing new curb and gutter as further described below. If you wish to submit a Bid on this work, please fill out the Bid Form sheet that is enclosed herein and return at the address listed below.

1) Definitions:

City – City of Concord, North Carolina

<u>Change Order</u> - A document recommended by the Director which is signed by Contractor and City and authorizes an addition, deletion, or revision in the Work or an adjustment in the Contract Price or the Contract Times, issued on or after the Effective Date of the Agreement.

<u>Contract</u> – the executed agreement between the City of Concord and the successful bidder, covering the performance of the work and the compensation therefore. The term contract is all inclusive with reference to all written agreements affecting a contractual relationship and all documents referred to therein, and shall specifically include, but not be limited to, the Bid Form, the printed Contract Form and all Attachments thereto, the Contract Bonds, Insurance Forms, Exhibits, the Plans, the Standard Specifications and all supplemental specifications thereto, the general conditions, and all executed supplemental agreements, all of which constitute one instrument.

<u>Contract Price</u> - The moneys payable by City to Contractor for completion of the Work in accordance with the Contract Documents as stated in the Agreement and subject to the applicable provisions of these General Conditions in the case of Unit Price Work and authorized Change Orders).

Contractor – the Contractor named in the contract documents.

<u>Director</u> – City of Concord Transportation Director or the Director's representative.

<u>Field Order</u> - A written order issued by the Director which requires minor changes in the Work but which does not involve a change in the Contract Price or the Contract Times.

Engineer - City of Concord Transportation Director

Owner – City of Concord, North Carolina.

<u>Proposal requirements</u> – the legal and procedural documents, any general and special provisions, together with modifications thereof, and Standard Specifications requirements, with all addenda thereto.

<u>Quoter</u> - An individual, partnership, firm, corporation, or joint venture submitting a quote for the work contemplated

<u>Special Conditions</u> - That part of the Contract Documents which amends or supplements

these General Conditions.

<u>Standard Drawings</u> - North Carolina Department of Transportation Raleigh, "Highway Design Branch Roadway Standard Drawings" <u>Latest Ed.</u>

<u>Standard Specifications</u> – North Carolina Department of Transportation Raleigh, "Standard Specifications for Roads and Structures", <u>Latest Ed.</u> and the "Highway Design Branch Roadway Standard Drawings" <u>Latest Ed.</u>

<u>Subcontractor</u> – any person, firm, partnership, corporation, with a direct contract with the Contractor who acts for or in behalf of the Contractor in executing any part of the contract, but does not include one who merely furnishes materials.

<u>Transportation Department</u> – City of Concord Transportation Department.

<u>Underground Facility, Utility, Services</u> - All underground pipeline, conduits, ducts, cables, wires, manholes, vaults, tanks, tunnels, or other such facilities or attachments, and any encasements containing such facilities, including those that convey electricity, gases, steam, liquid petroleum products, telephone or other communications, cable television, water, wastewater, storm water, other liquids or chemicals, or traffic of other control systems.

<u>Work</u> – the entire completed service or the various, separately identifiable parts, labor, material or requirement thereof needed to perform such under the contract documents to the satisfaction of the City.

2) Project Information: The work under the Lincoln St Bridge Replacement consists of removal of existing structures, and other materials, and perform necessary grading, tie-in, and installation of new bridge structure, asphalt, curbing, storm structure adjustments and all other necessary tasks to meet the Bridge Replacement of Lincoln Street Crossing Irish Buffalo Creek plan set. All work and materials shall meet and be in accordance with the provisions of the Occupational Safety and Health Administration, the North Carolina Department of Labor, North Carolina Department of Transportation Standard Specifications for Roads and Structures, latest Edition, the North Carolina Department of Transportation Roadways Standards Drawings, latest Edition the Manual on Uniform Traffic Control Devices, latest Edition, the City of Concord Technical Standards Manual, latest Edition, The Water and Sewer Authority of Cabarrus County's Standard Specifications, The City of Concord's Ordinances, Policies, and Standard Specifications, NCDOT Standard Specifications, and The North Carolina Administrative Code for Wastewater Collection and Water Distribution Systems. In the event of conflict between the Water and Sewer Authority of Cabarrus County's Standard Specifications, the City of Concord's Ordinances, policies, and Standard Specifications, and NCDOT Standard Specifications, or the North Carolina Administrative Code, the more restrictive requirements shall apply. All work should be completed in accordance with the Contract documents to the satisfaction of the Director and the City of Concord.

The Contractor is also hereby referred to certain items of the Special Conditions for further information with regards to this work.

Any defective work whether the result of poor workmanship, use of defective materials, damage through carelessness or any other cause shall be removed and the work re-executed at no cost to the City.

3) Specified Times of the Contract, Working Hours, Schedules, Reports, and Supervision: The Contractor shall pursue the work diligently with workmen in sufficient numbers, abilities, and supervision; and with equipment, materials and methods of construction as may be required to satisfactorily complete the work described in this contract as provided by the Director by the Completion Date of TWO HUNDRED AND SEVENTY (270) calendar days from the Commencement Date shall be the "Completion Date for Vehicular Access,"

THREE HUNDRED AND SIXTY (360) calendar days from the Commencement Date shall be the "Completion Date". from the Notice to Proceed Date to maintain working hours from 9:00 AM to 4:00 PM with a ½ hour unpaid lunch allowance unless otherwise modified by the Director. All work shall be accomplished in a continuous manner once the contractor begins. Normal, daily mobilizations in the course of the work shall be considered incidental to the contract unit prices of all quote items.

Additionally, the Contractor will at no cost to the City notify the Director within **forty-eight** (48) hours in advance of beginning work and thereafter coordinate with the Director or the Director's representative regarding the proposed work schedule, pay request submittals and obtain approval and request for cooperative efforts by the City.

The Contractor and Transportation Director, or appointed designee, is to coordinate specific times when work is to be limited with the adjacent property representatives.

The contractor is to inform the Director or the Designated Representative of the estimated arrival time on site and description of work to be performed for each workday. In the event that no work is to be performed, the contractor shall provide an explanation describing the reasons for the given day.

The Contractor will be required to begin work in accordance with the Notification to Proceed from the City on all work included in this contract or as directed by the Director or the Director's representative.

The Contractor shall at all times be responsible for the supervision, conduct, and discipline of his employees and/or Subcontractors and persons employed by said Subcontractors. All foremen and workmen must have sufficient knowledge, skill, and experience to perform properly the work assigned to them. Any foreman or workman, who in the opinion of the Director, that does not perform his work in a skillful and diligent manner, or who acts in a disorderly or intemperate manner, shall be removed from any portion of the work covered by this contract by the Contractor.

When one or multi-crews are employed, there shall be a designated crew foremen or job superintendent that will represent the Contractor as a single point of contact for the crew(s).

4) Specifications and Regulations: The following sections under this Part 4) are for earthwork, stormwater conveyance structure installation or adjustments, structural subgrades, concrete sidewalk installation, ADA accommodations, concrete curb and gutter, roadway asphalt and concrete pavements, sedimentation and erosion control, pavement marking, site security and work zone traffic safety, and other operations as also delineated and described in Part 2) Project Information, other Parts of Exhibit A, the construction plans, and Special Conditions.

All material, methods and other aspects of the work shall be provided, constructed, installed, inspected, and accepted in accordance with and as further defined under the applicable Divisions and Sections of the Standard Specifications, associated Standard Drawings, provisions of these General Conditions, Special Conditions, Contract Documents, construction plans or associated documents and cross-references therein and as generally described as follows:

Note: Where mentioned and applied in the Standard Specifications, Engineer shall under this contract be deemed as and have the same authority as the Transportation Director. Other

items with regards to specifications and regulations for this work are noted in the Special Conditions.

Construction Control of Work

The Contractor shall be responsible for all project control, construction layout, and staking so as to properly construct the work in accordance with Division 1 - Section 105 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative. No direct payment will be made for the control of work as this operation will be incidental to the work and full compensation for such will need to be included as part of the unit prices for the various Pay Items in the contract.

Work Zone Traffic Control

All material, installation of control measures, and maintenance of this section of the work shall be in accordance with Division 11 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

All pedestrian control, vehicular traffic control, safety, and security associated with the entire work shall be in accordance with Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD) latest Edition, OSHA, and any other applicable federal, state and local laws and regulations and shall be the responsibility of the Contractor. All hazards associated with the work that may pose as a danger and hazard shall be protected both during and outside of working hours. The Contractor shall not close a lane of traffic, detain and/or alter the traffic flow on or during holidays, holiday weekends, special events, or any other time when traffic is unusually heavy.

The Contractor is responsible for operating and maintaining traffic control correctly. At least one member of each crew on the project site shall be certified in Work Zone Traffic Control and the operation(s) being used. If the Contractor fails to provide proper traffic control, the Director or the Director's representative has the authority to cease all operations and the contractor will not be allowed to continue for that day on this contract. This will result in the loss of production for this day and is not a legitimate claim for contract time extension.

The Contractor shall operate his equipment and conduct his operation to maintain the flow and safety of traffic. Maintenance of traffic (both vehicular and pedestrian) shall be done in accordance with Section 150 of the Standard Specifications. Work shall only be performed when weather and visibility conditions allow safe operations. Traffic cones (36-inch minimum height) may be used when approved by the Director or the Director's representative. When cones are used, they shall be either double stacked or have special heavy bottoms such that they will not be blown over by traffic. The Contractor shall temporarily remove his equipment from the travelway for emergency vehicles and school buses as directed by the Director or the Director's representative.

Work shall not be performed before sunrise or after sunset unless approved by the Director and such work is in compliance with Section 107 of the Standard Specifications and the Contractor provides artificial lighting as may be necessary to provide for safe and proper construction and to provide for adequate inspection of the work as described in Section 1413 of the Standard Specifications. No direct payment will be made for any items as covered in Section 1413 as such will be considered incidental to other pay items of the work.

Earthwork

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 2, Division 8 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Pipes and Culverts

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 3 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Subgrades, Bases, and Shoulders

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 5 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Asphalt Pavements

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 6 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Concrete Pavements

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 7 and other applicable Sections and Divisions of the Standard Specifications unless otherwise delineated or specified. All work shall be to the satisfaction of the Director or the Director's representative.

Concrete Sidewalks, Wheelchair Ramps and Associated Incidentals

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 8 - Section 848 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative. All concrete materials, unless otherwise delineated or specified, used for the work shall be 3600 psi and be non-tinted.

Concrete Curb and Gutter

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 8 - Section 846 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Materials

All materials used for the work shall be in accordance with Division 10 and other applicable Sections and Divisions of the Standard Specifications. The Contractor shall furnish the applicable certifications and documentation for all materials as required by the Standard Specifications. Material that is not properly certified will not be accepted.

Pavement Markings

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 12 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Sedimentation and Erosion Control

All material, construction, inspection and acceptance of this section of the work shall be in accordance with Division 16 and other applicable Sections and Divisions of the Standard Specifications. All work shall be to the satisfaction of the Director or the Director's representative.

Acceptance of Materials and Work

Acceptance of all materials and work shall be to the satisfaction of the Director or the Director's representative.

Water Meter Vault

Provide water meter vault as shown in the plans, in accordance with the City of Concord Standard Detail and as directed by the Engineer. All items shown in the detail shall be included in this unit, including gate valve, vault, appurtenances to complete, and connection to existing backflow preventer. City to furnish and install meter.

Measurement and Payment

Water Meter Vault will be measured and paid as the actual number of vaults satisfactorily installed, connected and accepted. Such price and payment will be full compensation for all labor, material and equipment necessary to construct the water meter vault in accordance with the plans.

Payment will be made under:

Pay Item Pay Unit 4-in Water Meter Vault Each

Abandon Water Vault

Abandon water vault by breaking off and removing the top section in conflict with the proposed sidewalk, breaking the bottom slab for drainage and filling the vault with suitable material.

Plug connecting utility pipes before filling or removing the vault.

Removed frames and covers become the property of the Contractor for proper disposal.

Measurement and Payment

Payment will be made under:

Pay Item Pay Unit
Abandon Water Vault Each
Storm Drain Inlet Protection

DESCRIPTION

The Work covered in this section consists of installing storm drain inlet protection as necessary help reduce the effects of soil erosion and to retain sediment.

INSPECTION AND MAINTENANCE OF SEDIMENT TUBES

Inspect filter sacks after installation to ensure that no gaps exist under the filter sack and the rim of structure.

Inspect filter sacks every seven (7) days. Repair any damage to filter sack or replace per engineer request.

Remove sediment deposits that impair the filtration capability of a filter sack when the sediment reaches sediment capacity line on filter. Remove and/or replace installed filter sacks as required to adapt to changing construction site conditions.

MEASUREMENT AND PAYMENT

The quantity of "Filter Sack Inlet Protection" is to be paid for per each filter sack installed and accepted. All work consisting of, but not limited to, purchases, storing, and installing the filter sack and all material, time, and labor costs associated will be considered incidental to the work.

Payment will be made under:

Pay Item
Storm Drain Inlet Protection

Pay Unit Each

Inspection, quality control management and required testing for stormwater piping, concrete, and asphalt construction shall be in accordance with Division 3 – Pipe Culverts, Division 5 - Subgrades, Bases, and Shoulders, Division 6 – Asphalt Pavement, Division 7 – Concrete Pavements and Shoulders and Division 8 – Incidentals of the Standard Specifications and in accordance with the requirements shown in the Contract Documents. Other required inspections (i.e. erosion control devices, earthwork, etc.) shall be in accordance with the Standard Specifications and the Contract Documents.

Responsibilities of the Contractor shall be in accordance with Division 1 of the Standard Specifications and in accordance with the requirements shown in the Contract Documents.

The Contractor shall keep himself fully informed of, comply with, give all notices, and secure all permits and approvals associated with Federal, State and local laws, regulations, codes and ordinances in any manner affecting the work, and all such orders and decrees as exist, or may be enacted by bodies having any jurisdiction or authority over the work, and shall indemnify and hold harmless the City against any claim or liability, including the cost of defense and

attorney's fee arising from, or based on, the violation of any such laws, regulations, codes, ordinances, order or decree, whether by himself or his employee.

If any device, design, material or process covered by letters, patent or copyright is used by the Contractor, he shall provide for such use by legal agreement with the owner of the patent or a duly authorized licensee of such owner, and shall hold harmless the City from any and all loss or expense on account thereof in accordance with the first paragraph of this subsection, including its use by the City.

- 5) Posted Weight Limits: The Contractor's attention is directed to the fact that certain bridges in the City of Concord have posted weight limits. The Contractor will not be allowed to exceed the posted weight limits in transporting materials or equipment to the project. The Contractor should make a thorough examination of all maps and haul routes (both City and NCDOT facilities) on this project.
- 6) <u>Utility Locations, Conflict and Coordination</u>: Protection of all public and private property on and adjacent to the work and responsibility to the public shall be in accordance with Section 107 of the Standard Specifications.

The Contractor shall be solely responsible for contacting the appropriate utility or agency in the work areas and for the exact locations of all overhead or underground facilities, utilities or services before starting work. It shall be the sole responsibility of the Contractor to verify the location of all utilities and services along and in the work area and to protect such from uninterrupted service. The Contractor shall adhere to all applicable regulations and follow accepted safety procedures when working in the vicinity of utilities in order to insure the safety of construction personnel and the public.

Permanent relocation(s) of any utility or utility service as indicated on the construction plans and as specified on the Quoting Form shall be performed by the Contractor. Acceptance of all materials and work shall be to the satisfaction of the Director or the Director's representative in coordination with representatives of the appropriate utility or agency.

Any utility or service that, in the opinion of the Contractor, will have to be made safe or temporarily relocated in order to perform the work shall be coordinated between the Contractor and the applicable utility or service provider. No direct payment will be made for this work, as it will be incidental to the project work and payment at the contract unit price for the various Pay Items in the contract will be full compensation for such action.

7) Site Security, Sanitary Provisions, Clean-Up, Pollution Control, and Storage: The Contractor shall at all times conduct the work as to insure the least possible obstruction to pedestrians, vehicular traffic and inconvenience to the general public and businesses in the vicinity of the work, and to insure the protection of persons and property in a manner satisfactory to the City. No road shall be closed to the public except with the permission of the Director. Fire hydrants on or adjacent to the work shall be kept accessible to fire-fighting equipment at all times.

The Contractor is wholly responsible for off-site location of his trucks, equipment and associated material.

At the end of each workday, the Contractor shall clean the site of any non-structural component debris and waste materials, which result from the work and secure the work from any hazardous condition. The Contractor or his Subcontractor will haul and properly dispose

away any such debris or waste material to an approved, public receiving facility permitted by the Solid Waste Management Division of the North Carolina Department of Environment and Natural Resources to receive the type material being disposed. All debris materials permanently removed are the property of the Contractor.

The Contractor shall provide for the control of erosion, siltation, and pollution in accordance with Section 107-13 of the Standard Specifications.

The Contractor shall provide in accordance with Section 107-7 of the Standard Specifications such sanitary accommodations for the use of his employees as may be necessary to comply with the requirements and regulations of the local and State health authorities

The Contractor shall not enter upon private property for any purpose without obtaining permission, and shall be responsible for the preservation of all public property and other items, along and adjacent to the street right-of-way. The Contractor shall use every suitable precaution to prevent damage to such items and especially including vehicles, structures, poles, wires, conduits, underground infrastructure, signs, pavement, monuments, and property marks in the vicinity of the work.

- 8) <u>Insurance</u>: The Contractor shall procure and maintain insurance for the contract time by the Contractor, at his own expense, in an amounts and coverage as stated in **Sec. 7 and Sec. 8** of the **CONSTRUCTION CONTRACT FOR** <u>Lincoln Street Bridge Replacement.</u> Certificate(s) of Insurance and proof thereof shall be furnished to the Transportation Director and approved by the City of Concord Safety, Health and Risk Manager and City Attorney(s) prior to commencement of the work.
- 9) <u>Indemnity</u>: Refer to Sec. 13 of the CONSTRUCTION CONTRACT FOR <u>Lincoln Street Bridge Replacement</u>
- 10) <u>Contract Administration</u>: The general responsibility for the administration of this contract will be done by the Director or the Director's representative. All work, reports, and requests for payment shall be subject to inspection and evaluation by the Director or the Director's representative at any time.

The Director acting directly, or through duly authorized representatives, will decide all questions which may arise as to the quality and acceptability of the work performed and as to the rate of progress of the work; all questions which may arise as to the interpretation of the contract; and all questions as to the acceptable fulfillment of the contract on the part of the Contractor. The Director's decision shall be final and shall have executive authority to enforce and make effective such decisions and orders if the Contractor fails to carry out promptly.

11) Method of Measurement: Measurement of the work will be made based on the actual and verified quantities which has been satisfactorily completed and accepted by the City as under the specific pay items as provided on the Quote Form. The method of measurement and computations used in determination of quantities of material furnished and of work performed under the contract will be those methods generally recognized as conforming to accepted engineering practices and according to United States standard measures. Quantities indicated on the Quote Form are estimated and not guaranteed; they are solely for comparing Bid.

- 12) <u>Basis of Payment and Requests for Payment</u>: The quantities of the work, measured as provided above, will be paid for at the bid unit price on the Quote Form.
- 13) Payment(s) and full compensation for the work will be based on the actual accepted quantities installed and payment(s) shall include any and all related items as specified in the Project Information and as indicated on the construction plans and discussed in the pre-bid conference, the Standard Specifications or any Special Provisions attached hereto including, but is not limited to, all mobilizations, demobilizations, control, layout, materials, tools, labor, rentals, consumables, miscellaneous hardware, supporting hardware and software, clearing, grubbing, excavations, hauling operations, filling, rough grading and fine grading, compaction, installation and / or adjustments of stormwater drainage conveyance structures, incidental relocations, structural stabilization, forming, backfilling, sawing exiting concrete and asphalt, furnishing, placing, and finishing concrete, construction joints, ADA accommodations, milling, tacking, furnishing, placing and compaction of asphalt, sedimentation and erosion control, touch-up repairs, security of the work, traffic control and safety operations with associated materials, removal of any debris, cleanup, and disposal(s), special subcontracting, permits and licenses, seeding, mulching, miscellaneous landscaping and relocations, and all else required as necessary, in accordance with the Contract documents, City Technical Standards Manual, Standard Specifications, and Standard Drawings to the satisfaction of the Director and the City of Concord.

Note: There will be no payment made for any item of the work not specifically listed as a Quote Pay Item as they are considered incidental to the other Pay Items in the Quote.

Note: Any theft of materials or vandalism to the work that occurs during construction, as noted by the Director or his representative, shall be repaired or replaced at the expense of the Contractor at no cost to the City. Contractor will insure the work until such is completed and accepted by the City.

Forms for billing the City for services performed are to be made on forms provided by the City of Concord. No other forms will be accepted by the City and processed for payment. The Contractor shall submit month invoices (if the work goes beyond one month) by the 25th day of each month or interim invoices if so necessitated by certain contracts and as directed by the City, which shall be processed for payment thirty (30) days after receipt. Invoices and time sheets shall be in duplicate – one original set to be attached to invoices for City of Concord Finance Department and one copy to be filed with the Transportation Department.

14) Oral Agreements and Claims for Additional Compensation: No oral order, objection, claim or notice by any party to the others shall effect or modify any of the terms of obligations contained in any of the contract documents other than by a definitely agreed upon waiver or modification by both the Contractor and the City in writing.

Any claims for additional compensation shall be submitted in writing to the Director with detailed justification within thirty (30) days after receipt of the final invoice payment. The failure of the Contractor to submit the claim(s) within thirty days shall be a waiver of any such claims and a bar to recovery.

15) Contract Time and City's Right to Terminate Contract: This contract shall commence on the effective date given in the Contract Agreement (Notice to Proceed Date) and shall be effective for a period of The date that is TWO HUNDRED AND SEVENTY (270) calendar days from the Commencement Date shall be the "Completion Date for Vehicular Access,"

THREE HUNDRED AND SIXTY (360) calendar days from the Commencement Date shall be the "Completion Date". days. Any requests for extensions to the contract time shall be made in writing by the Contractor and approved by the Director. The City shall have the right to suspend work or to terminate the contract after giving at least ten (10) days written notice of suspension or termination to the Contractor.

- 16) <u>Subletting of Contract</u>: The Contractor shall not sublet, sell, transfer, assign or otherwise dispose of this contract or any portion thereof, or his right, title or interest therein, without written consent of the City. Subletting of this contract or any portion of the contract shall conform to the provisions of these General Conditions and the Standard Specifications Division 1 Section 108-6.
- 17) Notices to Proceed: The Contractor shall be ready to perform work operations and stand on emergency call as soon as possible after the issuance of a City Purchase Order Number / Notice to Proceed, but in no event delay the onset of work operations later than **thirty (30)** days of delivery of said City Purchase Order Number / Notice to Proceed.
- 18) <u>Litigation Venue</u>: Any controversy or litigation arising out of this contract shall be resolved in the courts of Cabarrus County, North Carolina and as further stated in **Sec. 15.** of the **CONSTRUCTION CONTRACT FOR** <u>Lincoln Street Bridge Replacement</u>. This contract shall be subject to the laws of the State of North Carolina and with respect to this Part 18), time is of the essence.
- 19) <u>Submission and Rejection of Quotes</u>: No Quoter may submit more than one quote. Multiple quotes under different names will not be accepted from one firm or association. A conditional quote will not be accepted. Oral, telephone, facsimile, or telegraph quotes will not be accepted. The Quote Form must be filled out and submitted in the bound documents. All quotes will remain subject to acceptance for the number of days set forth in the Quote Form. The City of Concord reserves the right to reject any or all quotes.
- 20) <u>Liquidated Damages</u>: The City and Contractor recognize that time is of the essence of this contract and that the City will suffer financial loss if the work is not completed within the contract specified time, plus any extensions thereof allowed in accordance with Part 17) of these General Conditions. They also recognize the delays, expense, and difficulties involved in proving in a legal or arbitration proceeding the actual loss suffered by the City if the work is not completed on time. Accordingly, instead of requiring any such proof, the City and Contractor agree that as liquidated damages for delay in vehicular access (but not as a penalty) the Contractor shall pay the City \$ 1000.00 for each calendar day, and delay in final completion of the project (but not as a penalty) the Contractor shall pay the City \$ 500.00 for each calendar day that expires after the respective contract specified time until the remaining / outstanding work (punchlist) is performed by the Contractor and until such time as punchlist completion and readiness for final payment is made. Should these delays continue concurrently; the liquidated damage amounts are subject to combination.

In case of joint responsibility for delay in the completion of the work, where two or more separate contracts are in force at the same time and cover work at the same site, liquidated damages assessed against any one Contractor will be based upon the individual responsibility of that Contractor for the delay as determined by, and in the judgment of, the Director.

The City shall have the right to deduct the liquidated damages from any money in its hands, otherwise due, or to become due, to the Contractor, or to initiate applicable dispute resolution

procedures and recover liquidated damages for nonperformance of this contract within the specified time of the contract.

Bid Submittal

Sealed bids will be received by the City of Concord at the Alfred M. Brown Operations Center, Conference Room C, 635 Alfred Brown Jr. Court, SW, Concord, North Carolina 28026-0308 until 2:00 p.m., local time, Wednesday February 29th, 2024 for the Lincoln Street Bridge Replacement.

At said place and time, and promptly thereafter, all bids that have been duly received will be publicly opened and read aloud.

Attendance at the Pre-Bid Conference (On-site at 11:30 AM, February 21st, 2024) is required to submit a Bid

Jamie Williams, P.E., Transportation Project Engineer City of Concord 635 Alfred Brown Jr. Court SW / P.O. Box 308 Concord, NC 28026-0308

Please note on outside of the envelope Bid Included – **Lincoln Street Bridge Replacement**

BID FORMLincoln Street Bridge Replacement

BASE BID ITEMS (1 THRU 18)										
Line Item and Sec No.	Description – Base Bid	Unit	Quantity	Unit Price \$	Item Total \$					
					_					
	Mobilization	LS	1							
0000400000-N 801	Construction Surveying	LS	1							
0043000000-N 226	Grading	LS	1							
0050000000-E 226	Supplemental Clearing and Grubbing	ACRE	1							
0057000000-E 226	Undercut Excavation	CY	450							
0127000000-N 235	Embankment Settlement Gauges	EA	1							
013400000-E 240	Drainage Ditch Excavation	CY	810							
019400000-E 265	Select Granular Material	CY	400							
019600000-E 270	Geotextile for Soil Stabilization	SY	400							
01004500000-E 505	Geotextile for Subgrade Stabilization	SY	300							
024800000-N SP	Type III Reinforced Approach Fill	LS	1							
031400000-E SP	Select Material	TON	10							
031800000-E 300	Foundation Conditioning Material, Minor Structures	TON	50							
032100000-E 300	Foundation Conditioning Geotextile	SY	150							
033520000-E 305	15" Drainage Pipe	LF	88							
033585000-E 305	15" Drainage Pipe Elbow	EA	2							
044820000-E 310	15" RC Pipe Culv, Class IV	LF	264							
044850000-E 310	30" RC Pipe Culv, Class IV	LF	76							
099500000-E 340	Pipe Removal	LF	307							
107700000-E SP	No. 57 Stone for Rock Cross Vane and Step Pool	TON	25							
109950000-E 505	Shallow Undercut	CY	100							
109970000-E 505	Class IV Subgrade Stabilization	TON	200							
112100000-E 520	Aggregate Base Course	TON	180							
122000000-E 545	Incidental Stone Base	TON	50							
133000000-Е 607	Incidental Milling	SY	260							

1491000000-E 610	Base Course, Type B25.0C	TON	200	
1503000000-E 610	Binder Course, Type I19.0C	TON	60	
1519000000-E 610	Surface Course, Type S9.5B	TON	320	
1575000000-E 620	AsphBinder for Plant Mix PG64-22	TON	35	
2022000000-E 815	Subdrain Excavation	CY	44.8	
2026000000-E 815	Geotextile for Subsurface	SY	200	
2020000000 12 012	Drain		200	
2036000000-Е 815	Subdrain Coarse Aggregate	CY	33.6	
2044000000-E 815	6" Perforated Subdrain Pipe	LF	200	
2070000000-N 815	Subdrain Pipe Outlet	EA	1	
2077000000-E 815	6" Outlet Pipe	LF	6	
2286000000-N 840	Masonry Drainage	EA	7	
	Structures			
2308000000-Е 840	Masonry Drainage	LF	3.1	
2274000000 N 040	Structures		2	
2374000000-N 840	Frame w/Grate and Hood	EA	2	
2374000000-N 840	840.03 Type F Frame w/Grate and Hood	EA	5	
23/400000-N 640	840.03 Type G	EA	3	
2549000000-E 846	2'-6" Concrete Curb and	LF	950	
22 13 00 00 00 12 0 10	Gutter	21	750	
2591000000-E 848	4" Concrete Sidewalk both	SY	770	
	sides			
3030000000-Е 862	Steel Beam Guardrail	LF	50	
3150000000-N 862	Additional Guardrail Posts	EA	5	
3215000000-N 862	Guardrail Anchor Units,	EA	4	
	Type III			
3288000000-N 862	Guardrail End Units, Type TL-2	EA	4	
3569000000-Е 867	Barbed Wire Fence Reset	LF	180	
3628000000-E 876	Plain Rip Rap, Class I	TON	30	
3642000000-E 876	Plain Rip Rap, Class A	TON	5	
3649000000-E 876	Plain Rip Rap, Class B	TON	40	
3651000000-E SP	Boulders	TON	75	
3656000000-E 876	Geotextile for Drainage	SY	985	
4685000000-E 1205	Thermoplastic (4", 90 MILS)	LF	2000	
490000000-N 1251	Permanent Raised Pavement Markers	EA	10	
6000000000-E 1605	Temporary Silt Fence	LF	1625	
6006000000-E 1610	Erosion Control Stone	TON	90	
	Class A	1311		
6009000000-E 1610	Erosion Control Stone Class B	TON	135	
6012000000-E 1610	Sediment Control Stone	TON	290	
6015000000-E 1615	Temporary Mulching	ACRE	1	
6018000000-E 1620	Seed for Temporary Seeding	LB	100	

(021000000 F 1(20	E (11) C T	TON	0.5	1	
6021000000-E 1620	Fertilizer for Temporary Seeding	TON	0.5		
6029000000-E SP	Safety Fence	LF	320		
6030000000-E 1630	Silt Excavation	CY	220		
6036000000 E 1631	Matting For Erosion	SY	7570		
0030000000 L 1031	Control	51	7570		
6037000000-E 1629	Coir Fiber Mat	SY	100		
6042000000-E 1632	1/4" Hardware Cloth	LF	315		
6070000000-N 1639	Special Stilling Basins	EA	10		
6071002000-E 1642	Flocculant	LB	25		
6084000000-Е 1660	Seeding and Mulching	ACRE	3		
6087000000-E 1660	Mowing	ACRE	0.5		
6093000000-E 1661	Seed For Repair Seeding	LB	50		
6096000000-E 1662	Seed For Supplemental	LB	50		
	Seeding				
6108000000-E 1665	Fertilizer Topdressing	TON	0.5		
6111000000-E SP	Impervious Dike	LF	195		
6114500000-N 1667	Specialized Hand Mowing	MHR	10		
6117000000-N 1675	Response for Erosion	EA	13		
	Control				
6117500000-N SP	Concrete Washout	EA	2		
	Structure				
6123000000-E 1670	Reforestation	ACRE	1.0		
STRUCTURES					
8021000000-N SP	Removal of Existing	LS	1		
010550000 F 411	Structure at 13+82.50	T.D.	110		
8105520000-E 411	3'-0" Drilled Piers in Soil	LF	112		
8105620000-E 411	3'-0" Drilled Piers Not in Soil	LF	52		
8111200000-E 411		T TO	1 4 4		
8111200000-E 411	Permanent Steel Casing for 3'-0" Dia Drilled Pier	LF	144		
8115000000-N 411	CSL Testing	EA	2		
8121000000-N 412	Unclassified Structure	LS	1		
	Excavation				
8175000000-E 420	Class AA Concrete	CY	58.6		
8182000000-E 420	Class A Concrete	CY	119		
8210000000-N 422	Bridge Approach Slabs	LS	1		
8217000000-E 425	Reinforcing Steel	LBS	38,833		
8224000000-E 425	Epoxy Coated Reinforcing	LBS	<mark>2,908</mark>		
0220000000 = 425	Steel P: C:	IDC	4.400		
8238000000-E 425	Spiral Column Reinforcing	LBS	4,422		
8328200000-E 450	Pile Driving Setup for HP 12x53 Steel Piles	EA	20		
8364000000-E 450	HP 12X53 Steel Piles	LF	400		
8391000000-L 450	Steel Pile Points	EA	10		
8475000000-E 460	Two Bar Metal Rail	LF	256		
8517000000-E 460	1'-2"x3'-4 ¹ / ₄ " Concrete	LF	270		
3217000000 12 100	Parapet	24	270		
8608000000-E 876	Rip Rap Class II (2'-0"	TON	622		
	Thick)				

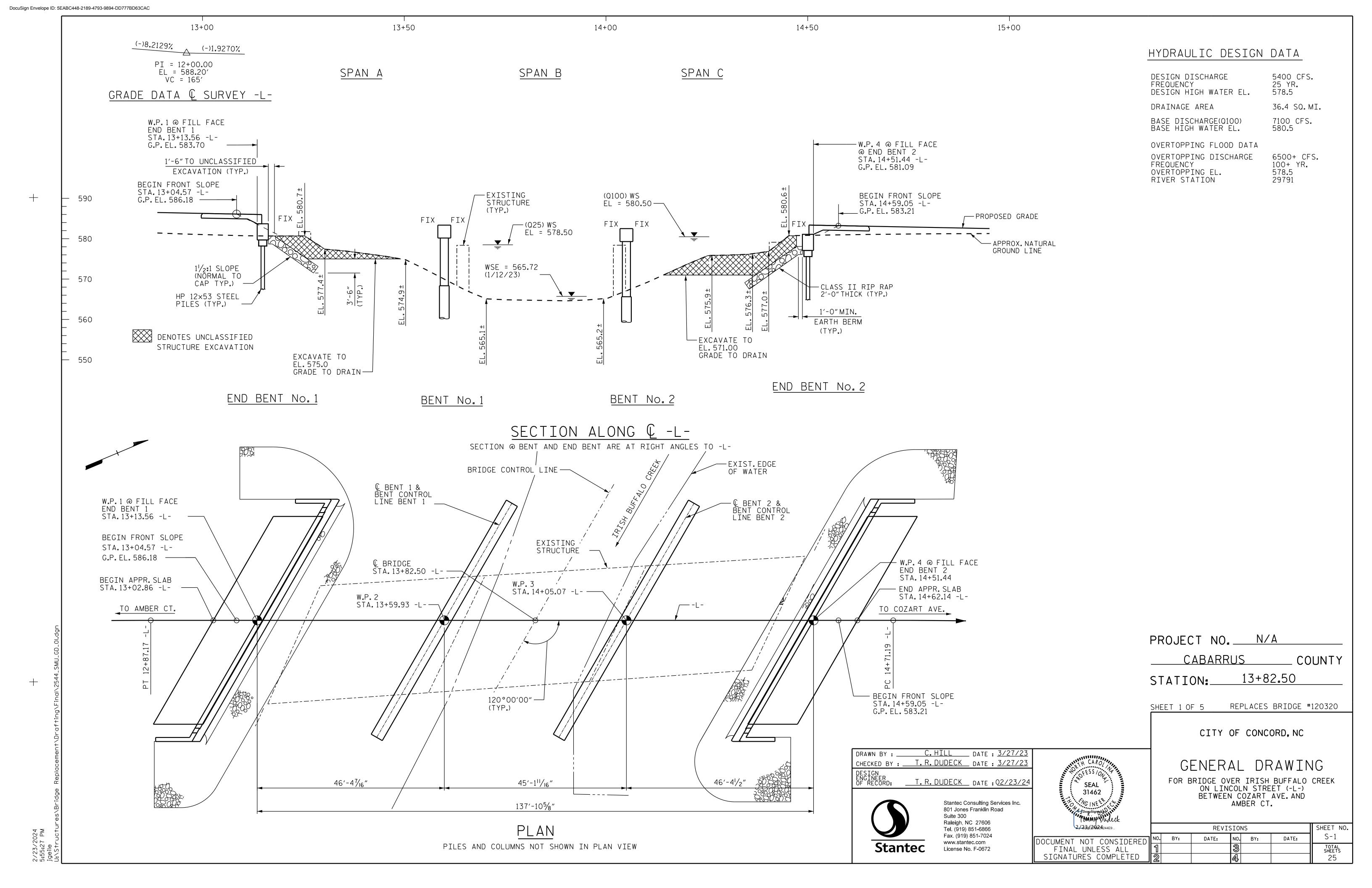
8622000000-E 876	Geotextile for Drainage	SY	692							
8657000000-N 430	Elastomeric Bearings	LS	1							
8762000000-E 430	3'-0"x1'-9" Prestressed	LF	2430							
	Concrete Cored Slabs									
UTILITY										
CONSTRUCTION										
	Plug Existing 24" Sewer	EA	4							
	Pipe for Abandonment									
	Remove Existing 24"	LF	65							
	Sewer Pipe									
	Remove Existing Sewer	EA	1							
	Manhole									
	Concrete Encasement For	LF	50							
	Existing 42" Sewer Pipe									
	Adjust Existing Sewer	EA	1							
	Manhole Rim ~1FT									
	Adjust Existing Sewer	EA	1							
	Manhole Rim ~4FT									
TOTAL BID										
	CY			•••••						

- This bid shall not add any unauthorized additions, deletions, or conditional bid.
- Bidder agrees that any and all excavations are unclassified.
- This bid will remain subject to acceptance for **thirty (30)** days after the date of submittal given above and that once accepted and the Contract executed between the City and the Contractor that the unit prices shall remain as submitted herewith for a period of **three hundred sixty-five (365)** days.
- Bidder agrees that the Work will be substantially complete within 225 days after the Notice to Proceed is executed and complete, and ready for final payment on or within **TWO HUNDRED AND SEVENTY (270)** days after the effective date of the contract (Notice to Proceed date). Time is of the essence.

Do Not Separate the Bid Form and Signature of Bidder sheets from the Contract **Document Book.**

***** SIGNATURE OF BIDDER ******

ın Individual	Contractor's License Number:							
	License Expiration Date:							
Ву:	(signature of individual)							
Business address:	State: ZIP:							
Phone No.:								
Date:								
ATTEST:								
ı Partnership	Contractor's License Number:							
	License Expiration Date:							
Ву:								
	(IIIII IIIIII)							
	(signature of general partner)							
doing business as:								
Business address:	State: ZIP:							
Phone No.:								


Date:		
ATTEST:	Title:	
Corporation	Contractor's License Number:	
eo.poramon	License Expiration Date:	
Descri	Electise Expiration Date.	
By:	(corporation name)	
	Title:	
(signature of a	nuthorized official)	
Business address:		
City:	State:	ZIP:
Phone No.:		
Date:		
ATTEST:	Title:	
(Seal)		
Joint Venture (OT)	Contractor's License Number:	
	License Expiration Date:	
Dv.		
ъу	(signature of individual)	
doing business as:		
Business address:		
City:	State:	ZIP:
Phone No.:		

Date:		, 20	
ATTEST:			
Partnership	Contractor's]	License Number:	
	License Expi	ration Date:	
Dyn			
Ву:	(firm na	me)	
	(signature of gen		
doing business as:			
Business address:			
City:		State:	ZIP:
Phone No.:		<u></u>	
Date:			
ATTEST:	Tit	:le:	
Corporation	Contractor's 1	License Number:	
	License Expi	ration Date:	
By:			
Dy	(corporation	n name)	
		Title:	
(signature of aut	thorized official)		
Business address:			
City:		State:	ZIP:
Phone No.:			
Date:		, 20	
Δ ΤΤΕ ς Τ·	Tit	·la·	

(Seal)

- Continued Next Page – **DEBARRED FIRMS CERTIFICATION FORM**

FROM:		
	P.O. Box 308, 35 Cabarrus Ave., W. Concord, North Carolina 28026-0308	
	Concord, North Carolina 28020-0308	
TO:	Bidders of Lincoln Street Bridge Replacement	
conviction any subc	andersigned hereby certifies that the firm ofot been suspended by the State of North Carolina or any Agency of action or indictment or any of the offences enumerated in N.C.G.S. aubcontracts of any tier to firms that have been suspended for convice offenses enumerated in N.C.G.S. 133-27.	3. 133-27 nor will award
Name of	e of firm	
	Title:	
Signature	ture of authorized official	
ATTEST	EST: Title:	
(Seal)		
	County	
North C	h Carolina	
Sworn a	en and Subscribed before me this the day of, 2	0
Signat	vnature of Notary Public (Print or type name of Notar	v Public)

+

END BENT 1

BENT 1

BENT 2

END BENT 2

FOUNDATION LAYOUT

DIMENSIONS LOCATING PILES AND DRILLED PIERS ARE SHOWN TO CENTERLINE OF PILES AND DRILLED PILES

NOTES:

- 1. FOR PILES, SEE SPECIAL PROVISION AND SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 2. IT HAS BEEN ESTIMATED THAT A HAMMER WITH AN EQUIVALENT RATED ENERGY IN THE RANGE OF 30-40 FT-LBS PER BLOW WILL BE REQUIRED TO DRIVE PILES AT END BENT NO.1 AND END BENT NO.2.
- 3. FOR DRILLED PIERS, SEE SECTION 411 OF THE STANDARD SPECIFICATIONS.
- 4. PERMANENT STEEL CASINGS MAY BE REQUIRED FOR DRILLED PIERS AT BENT NO.1 AND BENT NO.2.

 IF REQUIRED, DO NOT EXTEND PERMANENT CASINGS BEYOND THE TOP OF BEDROCK WITHOUT

 PRIOR APPROVAL FROM THE ENGINEER. THE ENGINEER WILL DETERMINE THE NEED FOR PERMANENT CASINGS.
- 5. MONITOR THE APPROACH FILL AT END BENT NO.2 RIGHT LANE FOR SETTLEMENT AFTER CONSTRUCTING THE APPROACH FILL TO GRADE.CONSTRUCT THE APPROACH SLAB AFTER THE SETTLEMENT RATE IS LESS THAN 0.10 INCH OVER A PERIOD OF FOUR WEEKS.

PROJECT NO. N/A

CABARRUS COUNTY

STATION: 13+82.50

SHEET 2 OF 5

CITY OF CONCORD, NC

GENERAL DRAWING

FOR BRIDGE OVER IRISH BUFFALO CREEK ON LINCOLN STREET (-L-) BETWEEN COZART AVE.AND AMBER CT.

Stantec

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com

J. B. GEILE DATE: 04/11/23

T. R. DUDECK DATE : 02/23/24

License No. F-0672

CHECKED BY: T.R.DUDECK DATE: 07/13/23

SEAL
31462

Temmy Dideck							
2/230£20324244E9			REVIS	10I	NS		SHEET N
DOCUMENT NOT CONSIDERED	NO.	BY:	DATE:	NO.	BY:	DATE:	S-2
FINAL UNLESS ALL	1			3			TOTAL SHEETS
SIGNATURES COMPLETED	2			4			25

END BENT/ BENT NO. PILE (s) #-# (e.g., "BENT 1, PILES 1-5")	FACTORED RESISTANCE PER PILE TONS	PILE CUT-OFF (TOP OF PILE) ELEVATION FT	PTLE LENGTH	SCOUR CRITICAL ELEVATION FT	MIN.PILE TIP (TIP NO HIGHER THAN)ELEV FT	REQUIRED DRIVING RESISTANCE (RDR)** PER PILE TONS	TOTAL PILE REDRIVES QUANTITY EACH	PREDRILLING LENGTH PER PILE LIN FT	PREDRILLING ELEVATION (ELEV NOT TO PREDRILL BELOW) FT	MAXIMUM PREDRILLING DIA INCHES	PILE EXCAVATION (BOTTOM OF HOLE) ELEV FT	PILE EXC NOT IN SOIL PER PILE LIN FT	PILE EXC IN SOIL PER PILE LIN FT
END BENT 1	91	581.8	20			155							
END BENT 2	91	579.3	30			185							

* PREDRILLING FOR PILES IS REQUIRED FOR END BENTS/ BENT WITH A PREDRILLING LENGTH AND AT THE CONTRACTOR'S OPTION FOR END BENTS/ BENTS WITH PREDRILLING INFORMATION BUT NO PREDRILLING LENGTH.

* * RDR= FACTORED RESISTANCE + FACTORED DOWNDRAY LOAD + FACTORED DEAD LOAD + NORMAL DOWNDRAG RESISTANCE + NORMAL SCOUR RESISTANCE SCOUR RESISTANCE FACTOR

	PILE DESIGN INFORMATION (BLANK ENTRIES INDICATE ITEM IS NOT APPLICABLE TO STRUCTURE)											
END BENT/ BENT NO. PILE (s) #-# (e.g., "BENT 1, PILES 1-5")	FACTORED AXIAL LOAD PER PILE TONS	FACTORED DOWNDRAG LOAD PER PILE FT	FACTORED DEAD LOAD* PER PILE TONS	DYNAMIC RESISTANCE FACTOR	NOMINAL DOWNDRAG RESISTANCE PER PILE TONS	NOMINAL SCOUR RESISTANCE PER PILE TONS	SCOUR RESISTANCE FACTOR (DEFAULT=1.00)					
END BENT 1	END BENT 1 91 0.60 1.00											
END BENT 2	END BENT 2 91 12 0.60 9 1.00											

* FACTORED DEAD LOAD IS FACTORED WEIGHT OF PILE ABOVE THE GROUND LINE.

	SUMMARY OF DRILLED PIER INFORMATION/ INSTALLATION (BLANK ENTRIES INDICATE ITEM IS NOT APPLICABLE TO STRUCTURE)												
END BENT/ BENT NO. PILE (s) #-# (e.g., "BENT 1, PILES 1-3")	FACTORED RESISTANCE PER PIER TONS	MINIMUM PIER TIP (TIP NO HIGHER THAN) ELEV. FT	REQUIRED TIP RESISTANCE PER PIER TSF	FIFVATTON	MIN. DRILLED PIER PENETRATION INTO ROCK PER PIER LIN FT	DRILLED PIER LENGTH* PER PIER LIN FT	DRILLED PIER LENGTH NOT IN SOIL* PER PIER LIN FT	DRILLED PIER LENGTH IN SOIL* PER PIER LIN FT	PERMANENT STEEL CASING REQUIRED? YES OR MAYBE	PERMANENT STEEL CASING TIP ELEVATION (ELEV NOT TO EXTEND CASING BELOW) FT	PERMANENT STEEL CASING LENGTH** PER PIER LIN FT		
BENT 1	258	552.0		545	7.0		7.0	14.0	MAYBE	TOP OF BEDROCK	18.0		
BENT 2	258	552.0		545	7.0		7.0	14.0	MAYBE	TOP OF BEDROCK	18.0		
TOTAL QTY:						168.0					144		

* DRILLED PIER LENGTH, DRILLED PIER LENGTH NOT IN SOIL AND DRILLED PIER LENGTH IN SOIL REPRESENT ESTIMATED DRILLED PIER QUANTITIES AND ARE MEASURED AND PAID FOR AS EITHER
"36 INCH DIA.DRILLED PIERS" OR "36 INCH DIA.DRILLED PIERS NOT IN SOIL" AND "36 INCH DIA.DRILLED PIERS IN SOIL" IN ACCORDANCE WITH ARTICLE 411-7 OF THE NCDOT STANDARD SPECIFICATIONS.

*** PERMANENT STEEL CASING LENGTH EQUALS THE DIFFERENCE BETWEEN THE GROUND LINE OR TOP OF DRILLED PIER ELEVATION, WHICHEVER IS HIGHER, AND THE PERMANENT CASING TIP ELEVATION AND IS MEASURED AND PAID FOR AS "PERMANENT STEEL CASING FOR 36" DIA.DRILLED PIER" IN ACCORDANCE WITH ARTICLE 411-7 OF THE NCDOT STANDARD SPECIFICATIONS.

NOTES:

- 1. THE PILE FOUNDATION TABLES ARE BASED ON THE BRIDGE SUBSTRUCTURE DESIGN AND FOUNDATION RECOMMENDATIONS SEALED BY A NORTH CAROLINA PROFESSIONAL ENGINEER (THOMAS J.DAILY, 045672) ON 06-13-2023.
- 2. TOTAL PILE DRIVING EQUIPMENT SETUP QUANTITY (NOT SHOWN IN PILE FOUNDATION TABLES) EQUALS THE NUMBER OF DRIVEN PILES, I.E., THE NUMBER OF PILES WITH A REQUIRED DRIVING RESISTANCE.
- 3. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING, PIPE PILE PLATES, PERMANENT STEEL CASING, SPTS, CSL TESTING, SID INSPECTIONS AND PITS WHEN THESE ITEMS MAY BE REQUIRED.

DRAWN BY: K.A.WOYAHN DATE: 07/06/23
CHECKED BY: T.R.DUDECK DATE: 08/23/23

DESIGN
ENGINEER
OF RECORD: T.R.DUDECK DATE: 02/23/24

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672 PROJECT NO. N/A

CABARRUS COUNTY

STATION: 13+82.50

CITY OF CONCORD, NC

FOUNDATION LAYOUT TABLES

REVISIONS

DOCUMENT NOT CONSIDERED
FINAL UNLESS ALL
SIGNATURES COMPLETED

2/236/22022/4244E9...

REVISIONS

REVISIONS

SHEET NO.
BY:
DATE:
NO.
BY:
DATE:
STOTAL
SHEETS
25

SHEET 3 OF 5

31462

2/23/2024 5:55:29 PM jgeile U:\Structures\Bridge Repla

SUMI		F DRIL		<u> </u>	ESTING
END BENT/ BENT NO. PILE (s) #-# (e.g., "BENT 1, PIERS 1-3")	STANDARD PENETRATION TEST (SPT) REQUIRED? YES OR MAYBE	CROSSHOLE SONIC LOGGING (CSL) REQUIRED? YES OR MAYBE	TOTAL CSL TUBE LENGTH (FOR ALL TUBES) PER PIER LIN FT	SHAFT INSPECTION DEVICE (SID) REQUIRED? YES OR MAYBE	PILE INTEGRITY TEST (PIT) REQUIRED? MAYBE
BENT 1		YES	90.0		
BENT 2		YES	90.0		
TOTAL QTY.			720.0		

* CSL TUBES ARE REQUIRED IF CSL TESTING IS OR MAY BE REQUIRED. THE NUMBER OF CSL TUBES PER DRILLED PIER IS EQUAL TO ONE TUBE PER FOOT OF DESIGN PIER DIAMETER WITH AT LEAST 4 TUBES PER PIER. THE LENGTH OF EACH CSL TUBE IS EQUAL TO THE DRILLED PIER LENGTH PLUS 1.5 FT.

PROJECT NO. N/A

CABARRUS CO

CABARRUS COUNTY
STATION: 13+82.50

SHEET 4 OF 5

CITY OF CONCORD, NC

DRAWN BY: K.A. WOYAHN DATE: 07/06/23

CHECKED BY: T.R. DUDECK DATE: 08/23/23

DESTGN

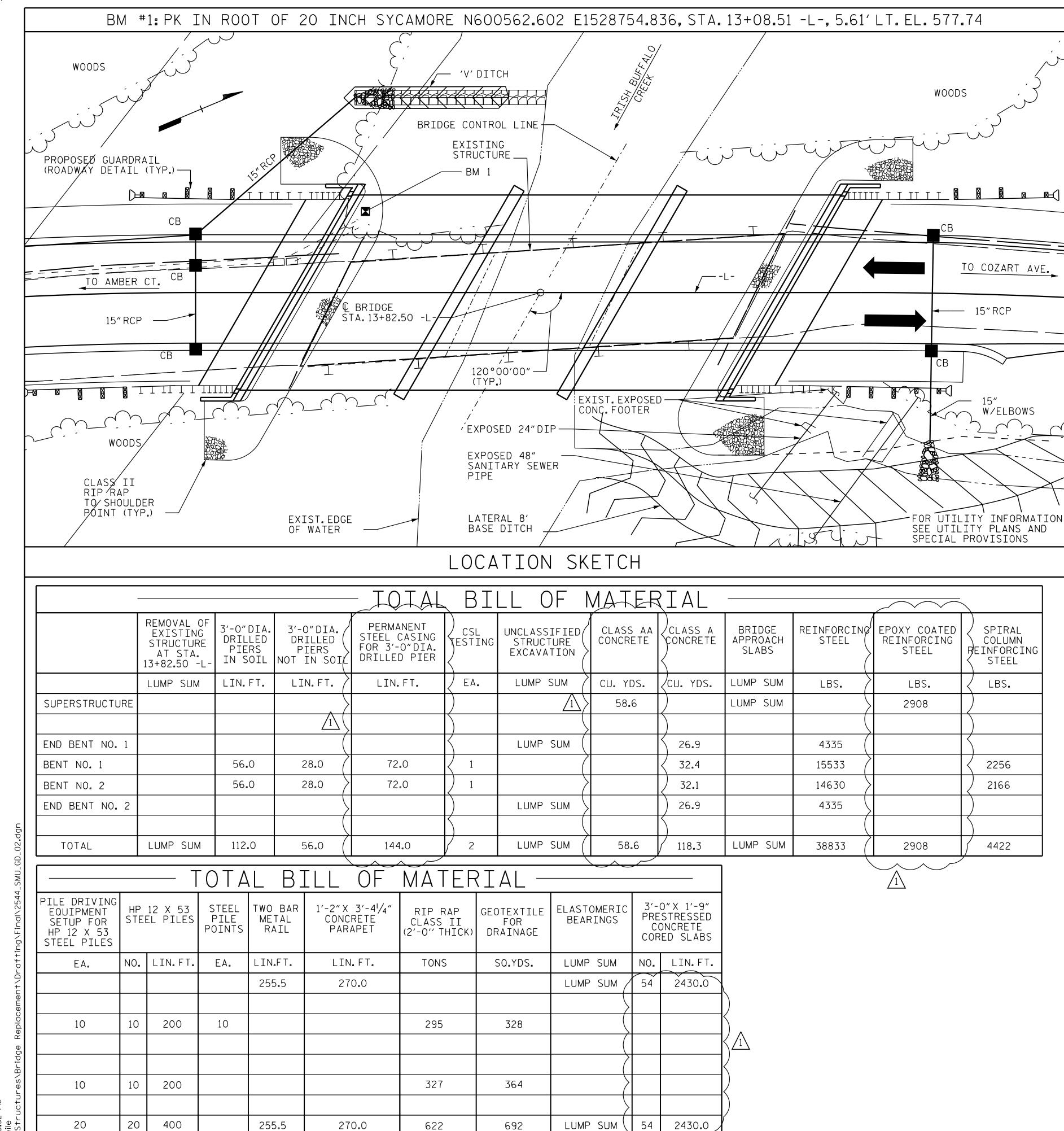
DESIGN ENGINEER OF RECORD:

T.R. DUDECK DATE: 02/23/24

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

FOUNDATION LAYOUT TABLES

REVISIONS


DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

REVISIONS

REVISIONS

SHEET NO. BY: DATE: NO. BY: DATE: S-4

TOTAL SHEETS
25

NOTES

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING

THIS BRIDGE HAS BEEN DESIGNED IN ACCORDANCE WITH THE REQUIREMENTS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1.

FOR EROSION CONTROL MEASURES, SEE EROSION CONTROL PLANS.

REMOVAL OF THE EXISTING BRIDGE SHALL BE PERFORMED IN A MANNER THAT PREVENTS DEBRIS FROM FALLING INTO THE WATER. THE CONTRACTOR SHALL SUBMIT DEMOLITION PLANS FOR REVIEW AND REMOVE THE BRIDGE IN ACCORDANCE WITH ARTICLE 402-2 OF THE STANDARD SPECIFICATIONS.

THE MATERIAL SHOWN IN THE CROSS-HATCHED AREA SHALL BE EXCAVATED FOR A DISTANCE OF 40 FT EACH SIDE OF CENTERLINE ROADWAY AS DIRECTED BY THE ENGINEER. THIS WORK WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR UNCLASSIFIED STRUCTURE EXCAVATION. SEE SECTION 412 OF THE STANDARD SPECIFICATIONS.

THE SUBSTRUCTURE OF THE EXISTING BRIDGE INDICATED ON THE PLANS IS FROM THE BEST INFORMATION AVALIABLE. SINCE THIS INFORMATION IS SHOWN FOR THE CONVENIENCE OF THE CONTRACTOR, THE CONTRACTOR SHALL HAVE NO CLAIM WHATSOEVER AGAINST THE DEPARTMENT OF TRANSPORTATION FOR ANY DELAYS OR ADDITIONAL COST INCURRED BASED ON DIFFERENCES BETWEEN THE EXISTING BRIDGE SUBSTRUCTURE SHOWN ON THE PLANS AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH "HEC 18-EVALUATING SCOUR AT BRIDGES."

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL PROVISIONS.

FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

ASPHALT WEARING SURFACE IS INCLUDED IN ROADWAY QUANTITY ON ROADWAY PLANS.

FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND RENOVATION ACTIVITIES, SEE SPECIAL PROVISIONS.

INASMUCH AS THE PAINT SYSTEM ON THE EXISTING STRUCTURAL STEEL CONTAINS LEAD, THE CONTRACTOR'S ATTENTION IS DIRECTED TO ARTICLE 107-1 OF THE STANDARD SPECIFICATIONS. ANY COSTS RESULTING FROM COMPLIANCE WITH APPLICABLE STATE OR FEDERAL REGULATIONS PERTAINING TO HANDLING OF MATERIALS CONTAINING LEAD BASED PAINT SHALL BE INCLUDED IN THE BID PRICE FOR "REMOVAL OF EXISTING STRUCTURE AT STATION 13+82.50."

FOR OTHER DESIGN DATA AND GENERAL NOTES, SEE SHEET SN.

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

PROJECT NO. N/A

CABARRUS COUNTY

13+82.50 STATION:_

SHEET 5 OF 5

CITY OF CONCORD, NC

GENERAL DRAWING

FOR BRIDGE IRISH BUFFALO CREEK ON LINCOLN STREET (-L-) COZART AVE. AND AMBER CT.

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

T. R. DUDECK DATE : 02/23/2

DRAWN BY : ______ C. HILL ___ DATE : 3/27/23 CHECKED BY: T.R. DUDECK DATE: 3/27/23

31462 ONGINETA SDOGUSIGNOOD BMMH MULL			BETWEE	_
2/232/2024 _{244E9}			REVI	SI
AENT NOT CONCIDEDED	NO.	BY:	DATE:	N

SHEET NO. IONS S-5 DATE: BY: DOCUMENT NOT CONSIDERED TOTAL SHEETS TRD 2/23/24 FINAL UNLESS ALL SIGNATURES COMPLETED 25

										STRE	ENGTH	I LIN	MIT S	TATE				SE	RVICE	III	LIMI	T STA	TE	
										MOMENT					SHEAR						MOMENT			I
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	COMMENT NUMBER
		HL-93(Inv)	N/A	1	1.02		1.75	0.730	1.86	45′	EL	21.90	0.726	1.02	45′	EL	1.50	0.80	0.730	2.14	45′	EL	21.90	
DESIGN		HL-93(0pr)	N/A		1.35		1.35	0.730	2.41	45′	EL	21.90	0.726	1.35	45′	EL	1.50	N/A						
LOAD RATING		HS-20(Inv)	36.000	2	1.22	43.9	1.75	0.730	2.28	45′	EL	21.90	0.726	1.22	45′	EL	1.50	0.80	0.730	2.63	45′	EL	21.90	
NATINO		HS-20(0pr)	36.000		1.61	58.0	1.35	0.730	2.95	45′	EL	21.90	0.726	1.61	45′	EL	1.50	N/A						
		SNSH	13.500		3.56	48.1	1.4	0.730	5.56	45′	EL	21.90	0.726	3.56	45′	EL	1.50	0.80	0.730	5.13	45′	EL	21.90	
	-	SNGARBS2	20.000		1.48	29.6	1.4	0.730	2.45	45′	EL	21.90	0.726	1.48	45′	EL	1.50	0.80	0.730	2.26	45′	EL	21.90	
		SNAGRIS2	22.000		1.42	31.2	1.4	0.730	2.25	45′	EL	21.90	0.726	1.42	45′	EL	1.50	0.80	0.730	2.08	45′	EL	21.90	
		SNCOTTS3	27.250		1.53	41.7	1.4	0.730	2.39	45′	EL	21.90	0.726	1.53	45′	EL	1.50	0.80	0.730	2.20	45′	EL	21.90	
	NS [SNAGGRS4	34.925		1.43	49.9	1.4	0.730	2.14	45′	EL	21.90	0.726	1.43	45′	EL	1.50	0.80	0.730	1.98	45′	EL	21.90	
		SNS5A	35.550		1.73	61.5	1.4	0.730	2.77	45′	EL	21.90	0.726	1.73	45′	EL	1.50	0.80	0.730	2.56	45′	EL	21.90	
		SNS6A	39.950		2.42	96.7	1.4	0.730	4.36	45′	EL	17.40	0.726	2.42	45′	EL	1.50	0.80	0.730	4.06	45′	EL	17.40	
LEGAL		SNS7B	42.000		2.58	108.4	1.4	0.730	4.49	45′	EL	21.90	0.726	2.58	45′	EL	1.50	0.80	0.730	4.15	45′	EL	21.90	
LOAD RATING		TNAGRIT3	33.000		1.67	55.1	1.4	0.730	2.76	45′	EL	21.90	0.726	1.67	45′	EL	1.50	0.80	0.730	2.55	45′	EL	21.90	
INATINO		TNT4A	33.075		1.61	53.3	1.4	0.730	2.79	45′	EL	21.90	0.726	1.61	45′	EL	1.50	0.80	0.730	2.58	45′	EL	21.90	
		TNT6A	41.600		1.56	64.9	1.4	0.730	2.34	45′	EL	21.90	0.726	1.56	45′	EL	1.50	0.80	0.730	2.16	45′	EL	21.90	
	TS.	TNT7A	42.000		1.43	60.1	1.4	0.730	2.39	45′	EL	21.90	0.726	1.43	45′	EL	1.50	0.80	0.730	2.21	45′	EL	21.90	
		TNT7B	42.000		1.36	57.1	1.4	0.730	2.48	45′	EL	21.90	0.726	1.36	45′	EL	1.50	0.80	0.730	2.30	45′	EL	21.90	
		TNAGRIT4	43.000		1.31	56.3	1.4	0.730	2.37	45′	EL	21.90	0.726	1.31	45′	EL	1.50	0.80	0.730	2.19	45′	EL	21.90	
		TNAGT5A	45.000		1.34	60.3	1.4	0.730	2.20	45′	EL	21.90	0.726	1.34	45′	EL	1.50	0.80	0.730	2.03	45′	EL	21.90	
		TNAGT5B	45.000	3	1.23	55.4	1.4	0.730	2.15	45′	EL	21.90	0.726	1.23	45′	EL	1.50	0.80	0.730	1.99	45′	EL	21.90	ı.

LOAD FACTORS:

LIMIT STATE YDC DESIGN LOAD STRENGTH I 1.25 1.50 FACTORS SERVICE III 1.00 1.00

NOTES:

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES.

ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

(#) CONTROLLING LOAD RATING

1 DESIGN LOAD RATING (HL-93)

2 DESIGN LOAD RATING (HS-20)

3 LEGAL LOAD RATING **

** SEE CHART FOR VEHICLE TYPE

GIRDER LOCATION

I - INTERIOR GIRDER

EL - EXTERIOR LEFT GIRDER

ER - EXTERIOR RIGHT GIRDER

PROJECT NO. N/A

<u>CABARRUS</u> COUNTY

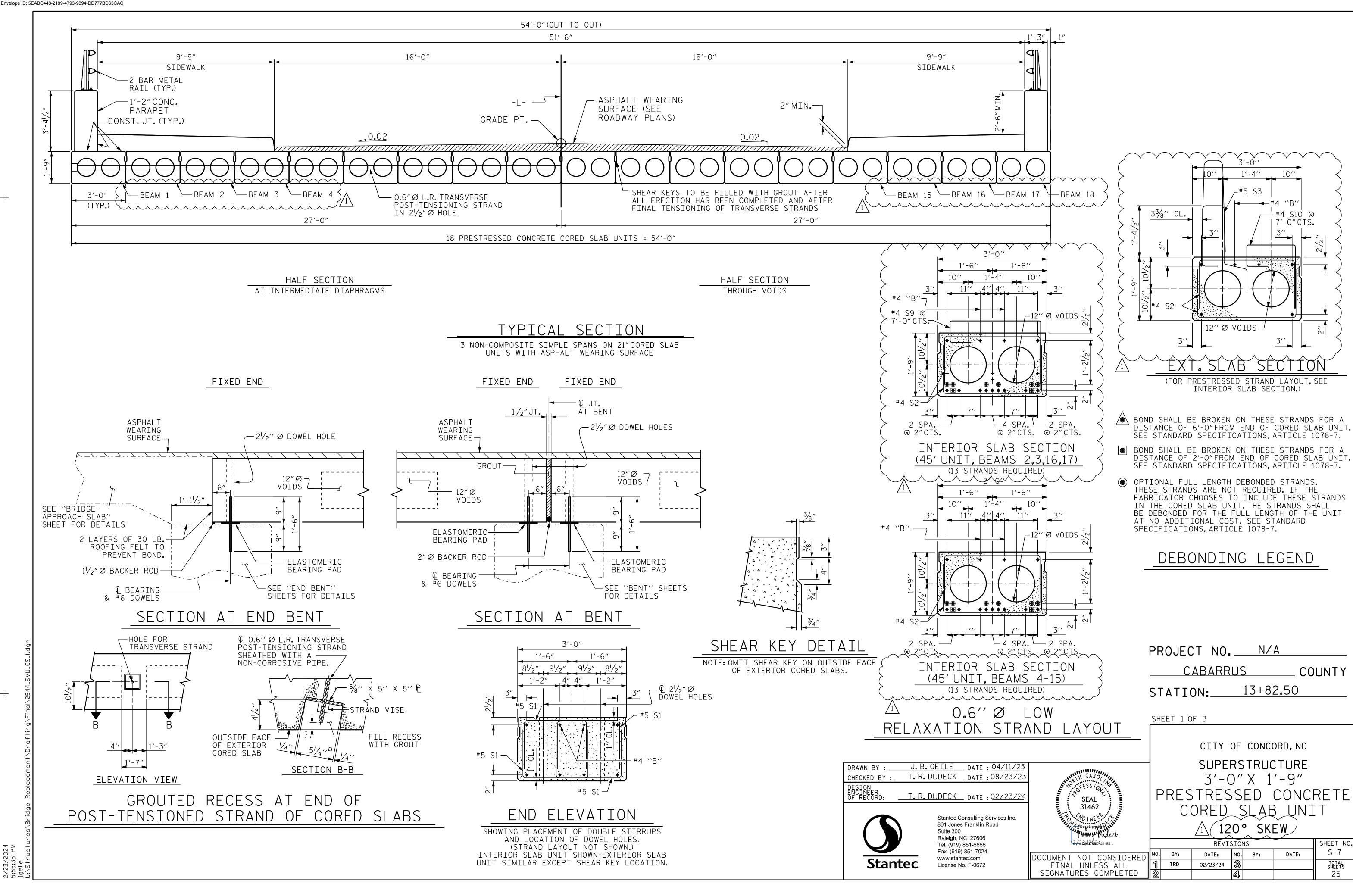
STATION: 13+82.50

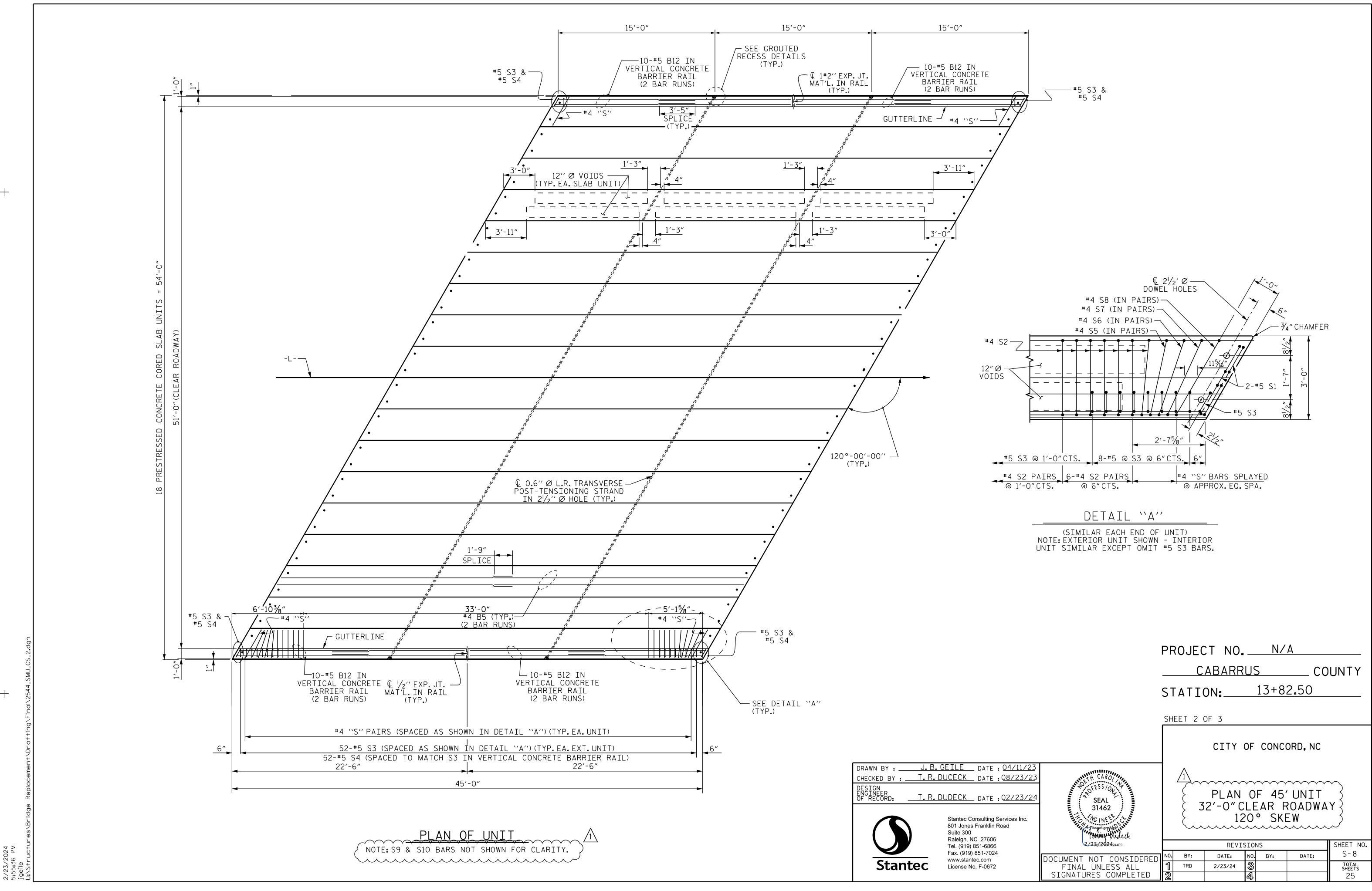
CITY OF CONCORD, NC

STANDARD LRFR SUMMARY FOR 45' CORED SLAB UNIT 60° SKEW & 120° SKEW

(NON-INTERSTATE TRAFFIC) REVISIONS SHEET NO. S-6 DATE: NO. BY: BY:

DOCUMENT NOT CONSIDERED 1 1 SIGNATURES COMPLETED 2

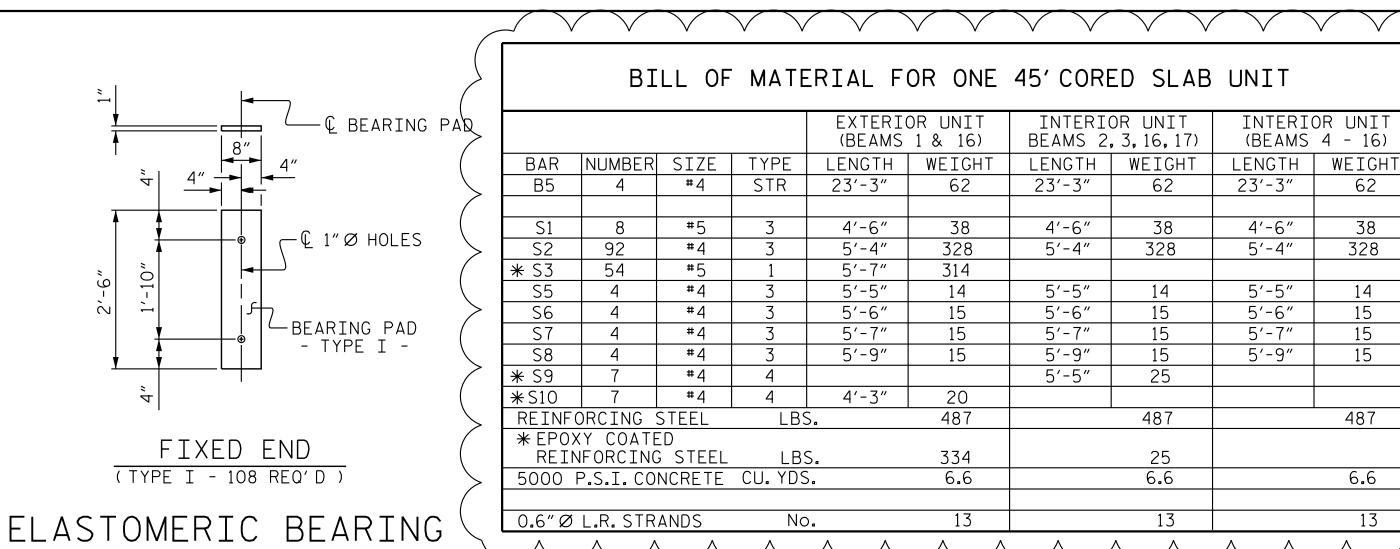

SEAL 31462 Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

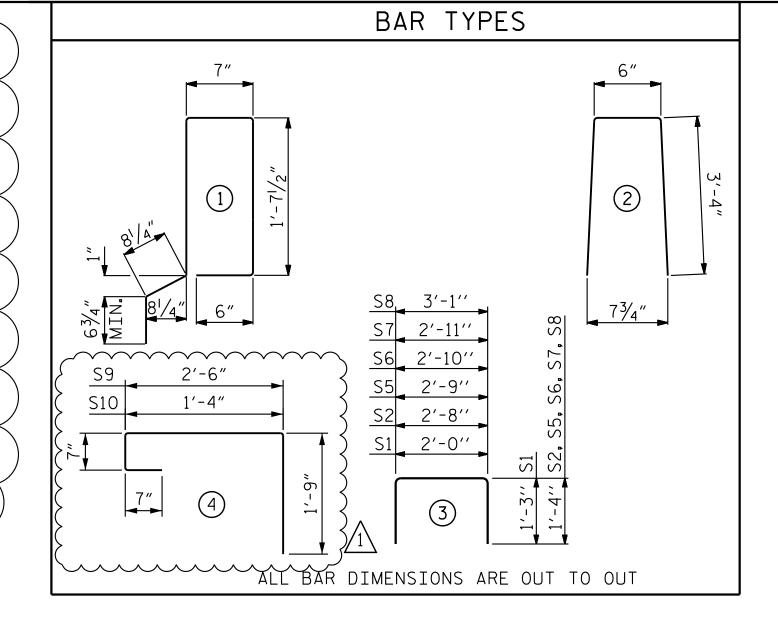

DRAWN BY: K.A. WOYAHN DATE: 05/15/23 CHECKED BY: T.R.DUDECK DATE: 08/23/23 T.R. DUDECK DATE : 02/23/24

Stantec

_RFR SUMMARY

FOR SPAN A


DETAILS


CONST. JT. —

* VARIES (SEE "GUTTERLINE ASPHALT

THICKNESS & PARAPET HEIGHT" TABLE) BY AT LEAST 1"

SECTION THRU CONC. PARAPET

ELASTOMER IN ALL BEARINGS SHALL BE 50 DUROMETER HARDNESS. 1'-2" 1'-0" 2"CL.MIN. GROUT — -#5 S4 2¹/₄" CL. SECTION T-T (TYP.) BAR! SECTION S-S AT DAM IN OPEN JOINT (THIS IS TO BE USED ONLY 3¹/₄" CL. WHEN SLIP FORM IS USED) Ĺ 1/2″EXP.JT.MAT'L HELD IN PLACE WITH GALVANIZED NAILS. (NOTE: OMIT EXP.JT.MAT'L. WHEN SLIP FORM IS USED.) —

В	BILL OF MATERIAL FOR CONCRETE PARAPET FOR ONE SPAN								
BAR	BARS PER PAIR OF EXTERIOR UNITS	TOTAL NO.	SIZE	TYPE	LENGTH	WEIGHT			
	45' UNIT								
∗ B12	80	80	#5	STR	14'-2"	1182			
* S4	104	104	#5	2	5′-8″	615			
★ EPOX	Y COATED REINFORCING STEEL			LBS.		1797			
CLASS AA CONCRETE CU.YDS. 10.6									
TOTAL CONCRETE PARAPET LN.FT. 90.00									

GUTTERLINE ASPHA	LT THICKNESS & PARAM	PET HEIGHT
51'-0"CLEAR ROADWAY	ASPHALT OVERLAY THICKNESS	PARAPET HEIGHT
	@ MID-SPAN	@ MID-SPAN
	SUPERED SECTION	
45' UNIT	2"	3′-8″

NOTES

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ALL REINFORCING STEEL CAST WITH THE CORED SLAB SECTIONS SHALL BE GRADE 60 AND SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE CORED SLABS.

RECESSES FOR TRANSVERSE STRANDS SHALL BE GROUTED AFTER THE TENSIONING OF THE STRANDS.

THE 21/2" Ø DOWEL HOLES AT FIXED ENDS OF SLAB SECTIONS SHALL BE FILLED WITH NON-SHRINK GROUT.

THE BACKER RODS SHALL CONFORM TO THE REQUIREMENTS OF TYPE M BOND BREAKER. SEE SECTION 1028 OF THE STANDARD SPECIFICATIONS.

WHEN CORED SLABS ARE CAST, AN INTERNAL HOLD-DOWN SYSTEM SHALL BE EMPLOYED TO PREVENT VOIDS FROM RISING OR MOVING SIDEWAYS. AT LEAST SIX WEEKS PRIOR TO CASTING CORED SLABS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER FOR REVIEW AND COMMENT, DETAILED DRAWINGS OF THE PROPOSED HOLD-DOWN SYSTEM. IN ADDITION TO STRUCTURAL DETAILS, LOCATION AND SPACING OF THE HOLD-DOWNS SHALL BE INDICATED.

ALL REINFORCING STEEL IN THE VERTICAL CONCRETE BARRIER RAIL SHALL BE EPOXY COATED.

PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE CORED SLAB UNIT ENDS.

APPLY EPOXY PROTECTIVE COATING TO CORED SLAB UNIT ENDS.

GROOVED CONTRACTION JOINTS, $\frac{1}{2}$ " IN DEPTH, SHALL BE TOOLED IN ALL EXPOSED FACES OF THE BARRIER RAIL AND IN ACCORDANCE WITH ARTICLE 825-10(B) OF THE STANDARD SPECIFICATIONS. A CONTRACTION JOINT SHALL BE LOCATED AT EACH THIRD POINT BETWEEN BARRIER RAIL EXPANSION JOINTS. ONLY ONE CONTRACTION JOINT IS REQUIRED AT MIDPOINT OF BARRIER RAIL SEGMENTS LESS THAN 20 FEET IN LENGTH AND NO CONTRACTION JOINTS ARE REQUIRED FOR THOSE SEGMENTS LESS THAN 10 FEET IN LENGTH.

FLAME CUTTING OF THE TRANSVERSE POST-TENSIONING STRAND IS NOT ALLOWED.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE CORED SLAB UNIT SHALL BE DONE WHEN THE CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN THE REQUIRED STRENGTH SHOWN IN THE "CONCRETE RELEASE STRENGTH" TABLE.

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

THE PERMITTED THREADED INSERTS ARE DETAILED AS AN OPTION FOR THE CONTRACTOR TO ATTACH FALSEWORK AND FORMWORK DURING CONSTRUCTION.

THE PERMITTED THREADED INSERTS IN THE EXTERIOR UNITS SHALL BE SIZED BY THE CONTRACTOR, SPACED AT 4'-0" CENTERS AND GALVANIZED IN ACCORDANCE WITH SECTION 1076 OF THE STANDARD SPECIFICATIONS. STAINLESS STEEL THREADED INSERTS MAY BE USED AS AN ALTERNATE.

THE PERMITTED THREADED INSERTS SHALL BE GROUTED BY THE CONTRACTOR IMMEDIATELY FOLLOWING REMOVAL OF THE FALSEWORK.

THE COST OF THE PERMITTED THREADED INSERTS SHALL BE INCLUDED IN THE PRICE BID FOR THE PRECAST UNITS.

> PROJECT NO. N/A CABARRUS _ COUNTY

13+82.50 STATION:_

SHEET 3 OF 3

CITY OF CONCORD, NC

3'-0'' X 1'-9'' PRESTRESSED CONCRETE CORED SLAB UNIT

120° SKEW

SHEET NO.

S-9

TOTAL SHEETS

DATE:

REVISIONS NO. BY: DATE: BY: DOCUMENT NOT CONSIDERED FINAL UNLESS ALL TRD 2/23/24 SIGNATURES COMPLETED

SEAL

31462

J.B.GEILE DATE: 04/11/23

T. R. DUDECK DATE : 02/23/24

Raleigh, NC 27606

Tel. (919) 851-6866 Fax. (919) 851-7024

www.stantec.com

License No. F-0672

Suite 300

Stantec Consulting Services Inc. 801 Jones Franklin Road

CHECKED BY: ____T.R.DUDECK__ DATE: 08/25/23

CONST. JT.— ELEVATION AT EXPANSION JOINTS

CHAMFER

CHAMFER

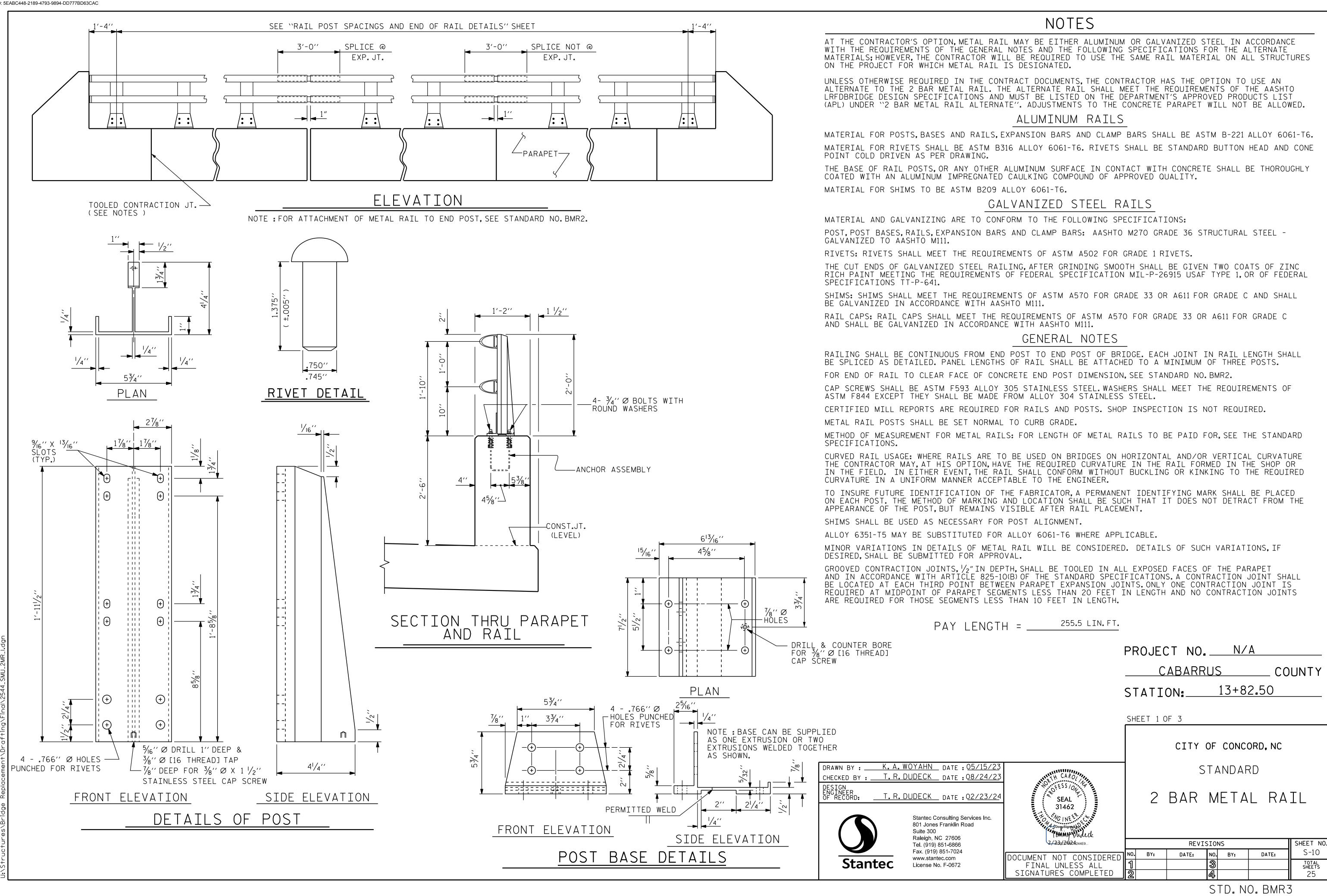
VERTICAL CONCRETE PARAPET SECTION

#5 S3 (SEE "PLAN OF

2 REPOSITION THESE BARS AS REQUIRED TO CLEAR

DECK DRAIN BLOCK-OUTS

UNIT" FOR SPACING)

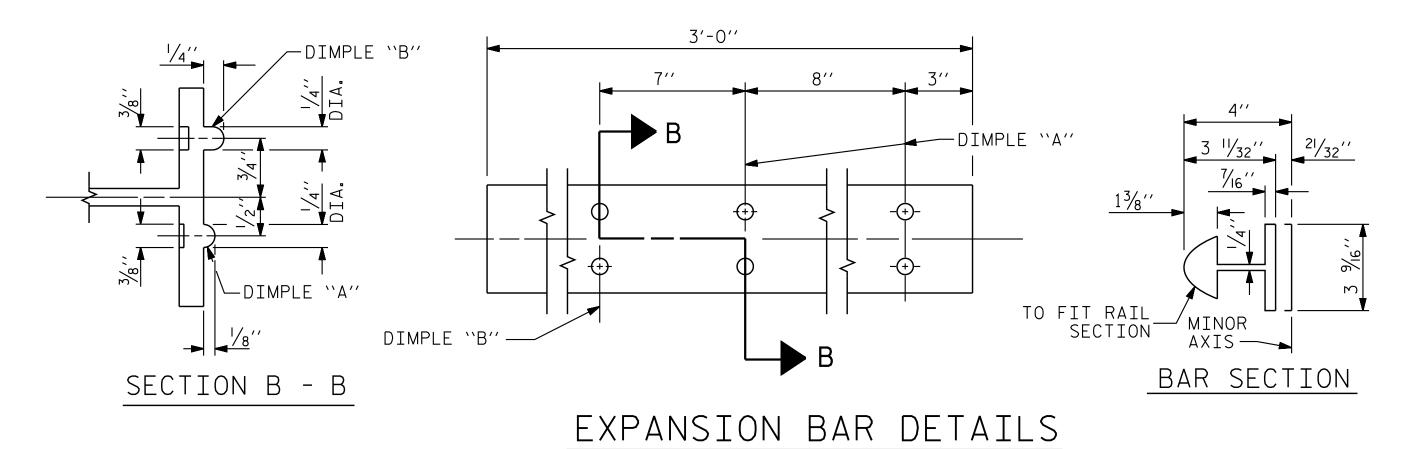

CORED SLABS REQUIRED									
NUMBER LENGTH TOTAL LENGTH									
45' UNIT									
EXTERIOR C.S.	6	45'-0"	270′-0″						
INTERIOR C.S.	48	45'-0"	2,160'-0"						
TOTAL 54 45'-0" 2,430'-0"									
(SPANS A, B, AND C)									

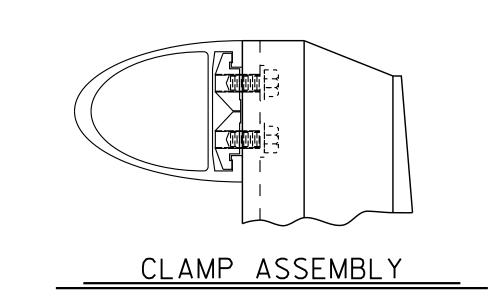
CHAMFER

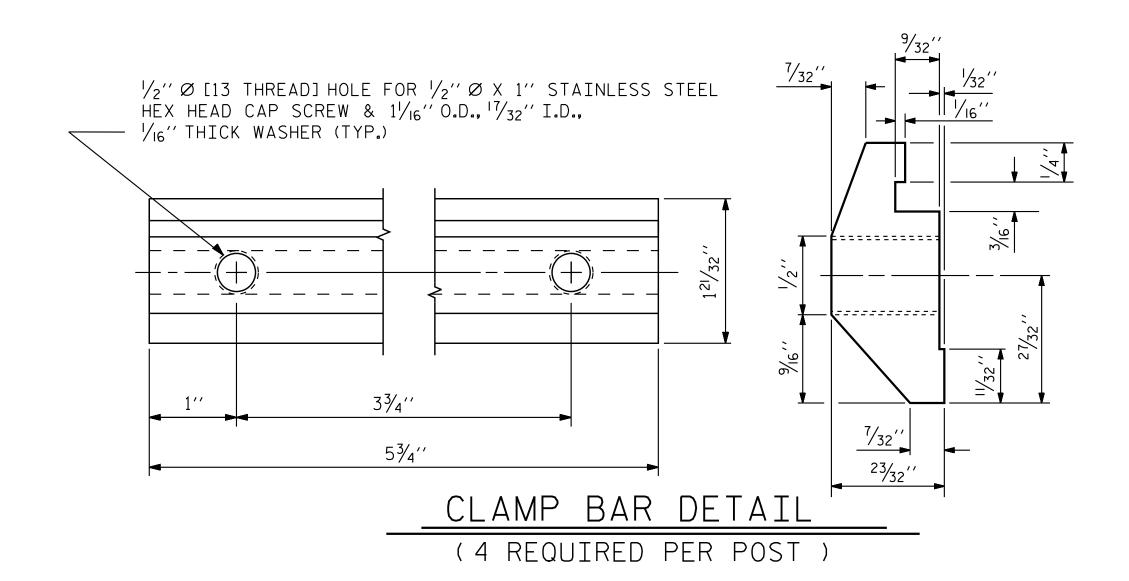
¾" III CHAMFER

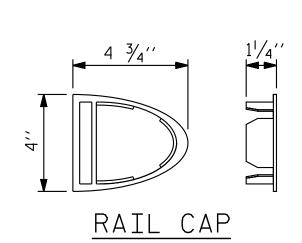
DEAD LOAD DEFLECTION AN	ND CAMBER
	3'-0" × 1'-9"
45' CORED SLAB UNIT	0.6"Ø L.R. Strand
CAMBER (SLAB ALONE IN PLACE)	7∕8″ ੈ
DEFLECTION DUE TO SUPERIMPOSED DEAD LOAD***	l∕8″ ∳
FINAL CAMBER	3/4″ ♠

Stantec ** INCLUDES FUTURE WEARING SURFACE


SLOTTED TO EDGE OF PLATE TO FACILITATE PLACEMENT.

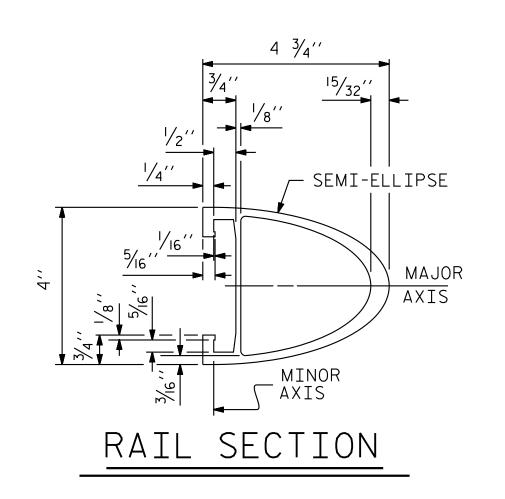



WIRE STRUT


METAL RAIL ANCHOR ASSEMBL

ASSEMBLIES REQUIRED)

NOTES


STRUCTURAL CONCRETE ANCHOR ASSEMBLY

THE STRUCTURAL CONCRETE ANCHOR ASSEMBLY SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND SHALL HAVE A MINIMUM LENGTH OF THREADS OF 2" FOR $\frac{3}{4}$ " FERRULES.
- B. 4 $\frac{3}{4}$ " Ø X 2 $\frac{1}{2}$ " BOLTS WITH WASHERS. BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307. BOLTS AND WASHERS SHALL BE GALVANIZED. AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE $\frac{3}{4}$ " \emptyset X $2\frac{1}{2}$ " GALVANIZED BOLTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.
- C. WIRE STRUT SHOWN IN THE CONCRETE ANCHOR ASSEMBLY DETAIL IS THE MINIMUM ALLOWABLE SIZE AND SHALL HAVE A MINIMUM TENSILE STRENGTH OF 100,000 PSI. AS AN OPTION, A 7/6 WIRE STRUT WITH A MINIMUM TENSILE STRENGTH OF 90,000 PSI IS ACCEPTABLE.
- D. THE METAL RAIL ANCHOR ASSEMBLIES TO BE HOT DIPPED GALVANIZED TO CONFORM TO REQUIREMENTS OF AASHTO M111.
- E. THE COST OF THE METAL RAIL ANCHOR ASSEMBLY WITH BOLTS AND WASHERS COMPLETE IN PLACE SHALL BE INCLUDED IN THE PRICE BID FOR LINEAR FEET OF METAL RAIL.
- F. BOLTS TO BE TIGHTENED ONE-HALF TURN WITH A WRENCH FROM A FINGER-TIGHT POSITION.

THE CONTRACTOR MAY USE ADHESIVELY ANCHORED ANCHOR BOLTS IN PLACE OF THE METAL RAIL ANCHOR ASSEMBLY. LEVEL ONE FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE $\frac{3}{4}$ " \varnothing BOLT IS 10 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE THE STANDARD SPECIFICATIONS.

WHEN ADHESIVELY ANCHORED ANCHOR BOLTS ARE USED, BOLTS SHALL MEET THE REQUIREMENTS OF ASTM F593 ALLOY 304 STAINLESS STEEL WITH MINIMUM 75,000 PSI ULTIMATE STRENGTH. NUTS SHALL MEET THE REQUIREMENTS OF ASTM F594 ALLOY 304 STAINLESS STEEL AND WASHERS SHALL MEET THE REQUIREMENTS OF ASTM F844 EXCEPT THEY SHALL BE MADE FROM ALLOY 304 STAINLESS STEEL.

PROJECT NO. N/A CABARRUS COUNTY 13+82.50 STATION:_

SHEET 2 OF 3

CITY OF CONCORD, NC

STANDARD

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

K. A. WOYAHN DATE : 05/15/23

T.R. DUDECK DATE: 02/23/24

CHECKED BY: T.R. DUDECK DATE: 08/24/23

2 BAR METAL RAIL

SHEET NO. **REVISIONS** S-11 DATE: DATE: BY: BY: DOCUMENT NOT CONSIDERED 1
FINAL UNLESS ALL 1
SIGNATURES COMPLETED 2 TOTAL SHEETS 25

<u></u> € ¹³/₁₆" X 1" SLOTS

½′′ ₽

+

ELEVATION

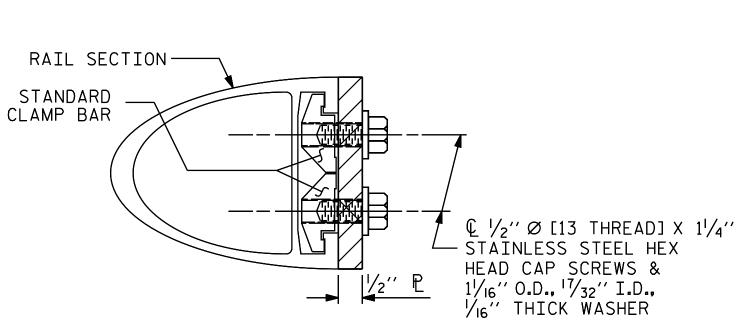
 $\frac{13}{16}$ X 1" SLOTS $\frac{12}{2}$

3 3/4′′

TOP VIEW

© 11/2" Ø HOLE-

<u>~ 3'-0"</u> 3'-0"-2 SPA. 2 SPA. @ 2'-9" 1'-4" 6 SPA.@ 5'-6" @ 2'-9" 6 SPA. @ 5'-6" 6 SPA. @ 6'-6" END — POST/ POST /* // _T <u>T</u> T T T T//! T / T *ፕ /* ፕ Т ፕ ፕ ፕ **T** T T ፕ 3'-9" 6" € BENT 2— — € BENT 1 - CONCRETE PARAPET RAIL POST (TYP.) — (TYP.) 135′-3"


PLAN OF RAIL POST SPACINGS

ANGLE TO BE MADE FROM 11'-4" AND 2" AND 2" O.D. WASHER CONCI RAIL SECTION STANDARD STANDARD

PLAN - RAIL AND END POST END VIEW (FIX AND EXP.)

BAR CLAMP

 $\mathbb{Q} / /_2$ " \varnothing [13 THREAD] X $1 / /_4$ " - STAINLESS STEEL HEX HEAD CAP SCREWS & $1 / /_{16}$ " $0 \cdot D \cdot , | 7 / _{32}$ " $1 \cdot D \cdot , | 7 / _{16}$ " THICK WASHER

SECTION H-H (FIX)

© 11/2" Ø HOLE —

FIXED

PLAN ELEVATION

STRUCTURAL CONCRETE

INSERT

R.P.W.(TYP.ALL)

* EACH WELDED ATTACHMENT OF WIRE TO FERRULE SHALL DEVELOP THE TENSILE STRENGTH OF THE WIRE.

DETAILS FOR ATTACHING METAL RAIL TO END POST

NOTES

STRUCTURAL CONCRETE INSERT

A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND

THE STRUCTURAL CONCRETE INSERT ASSEMBLY SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND SHALL HAVE A MINIMUM LENGTH OF THREADS OF $1^{1}/2^{\prime\prime}$.
- B. 1 ¾" Ø X 15%" BOLT WITH WASHER.BOLT SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307.BOLT AND WASHER SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLT AND WASHER—END POST MAY BE USED AS AN ALTERNATE FOR THE ¾" Ø X 15%" GALVANIZED BOLT AND WASHER.THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)
 - C. WIRE STRUT SHOWN IN THE CONCRETE INSERT ASSEMBLY DETAIL IS THE MINIMUM ALLOWABLE SIZE AND SHALL HAVE A MINIMUM TENSILE STRENGTH OF 100,000 PSI. AS AN OPTION, A 7_{16} " Ø WIRE STRUT WITH A MINIMUM TENSILE STRENGTH OF 90,000 PSI IS ACCEPTABLE.

NOTES

METAL RAIL TO END POST CONNECTION

THE METAL RAIL TO END POST CONNECTION SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- A. 1/2" PLATES SHALL CONFORM TO AASHTO M270 GRADE 36 AND SHALL BE GALVANIZED AFTER FABRICATION.
- B. $\frac{3}{4}$ " STRUCTURAL CONCRETE INSERT SHALL HAVE A WORKING LOAD SHEAR CAPACITY OF 4800 LBS. THE FERRULES SHALL ENGAGE A $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT WITH 2" O.D. WASHER IN PLACE. THE $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT SHALL HAVE N. C. THREADS.
- C. CAP SCREWS FOR RAIL ATTACHMENT TO ANGLE SHALL CONFORM TO THE REQUIREMENTS OF ASTM F593 ALLOY 305 STAINLESS STEEL. CAP SCREWS TO BE CENTERED IN SLOTS AT 60°F.
- D. STANDARD CLAMP BARS (SEE METAL RAIL SHEET).

K. A. WOYAHN DATE : 05/17/23

T. R. DUDECK DATE: 08/23/23

T.R. DUDECK DATE : 02/23/24

Raleigh, NC 27606

Tel. (919) 851-6866

Fax. (919) 851-7024

www.stantec.com

License No. F-0672

Suite 300

Stantec

Stantec Consulting Services Inc.

801 Jones Franklin Road

- (€ ¾′′ STRUCTURAL - CONCRETE INSERT

-ROADWAY FACE

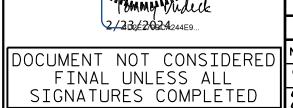
_CLOSED-END FERRULE

- E. $\frac{1}{2}$ " Ø PIPE SLEEVES (IF REQUIRED) TO BE GALVANIZED.
- THE COST OF THE STANDARD CLAMP BARS AND CAP SCREWS USED IN THE METAL RAIL TO END POST CONNECTION SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR LINEAR FEET OF 1 OR 2 BAR METAL RAILS.
- THE $\frac{3}{4}$ " STRUCTURAL CONCRETE INSERT WITH BOLT SHALL BE ASSEMBLED IN THE SHOP.
- THE COST OF THE $\frac{3}{4}$ " STRUCTURAL CONCRETE INSERT ASSEMBLY, AND THE $\frac{1}{2}$ " PLATES COMPLETE IN PLACE SHALL BE INCLUDED IN THE VARIOUS PAY ITEMS.

THE CONTRACTOR, AT HIS OPTION, MAY USE AN ADHESIVE BONDING SYSTEM IN LIEU OF THE STRUCTURAL CONCRETE INSERT EMBEDDED IN THE END POST. IF THE ADHESIVE BONDING SYSTEM IS USED, THE $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT WITH WASHER SHALL BE REPLACED WITH A $\frac{3}{4}$ " Ø X $6\frac{1}{2}$ " BOLT AND 2" O.D. WASHER. ALL SPECIFICATIONS THAT APPLY TO THE $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT SHALL APPLY TO THE $\frac{3}{4}$ " Ø X $6\frac{1}{2}$ " BOLT. FIELD TESTING OF THE ADHESIVE BONDING SYSTEM IS NOT REQUIRED.

PROJECT NO. N/A

CABARRUS COUNTY


STATION: 13+82.50

SHEET 3 OF 3

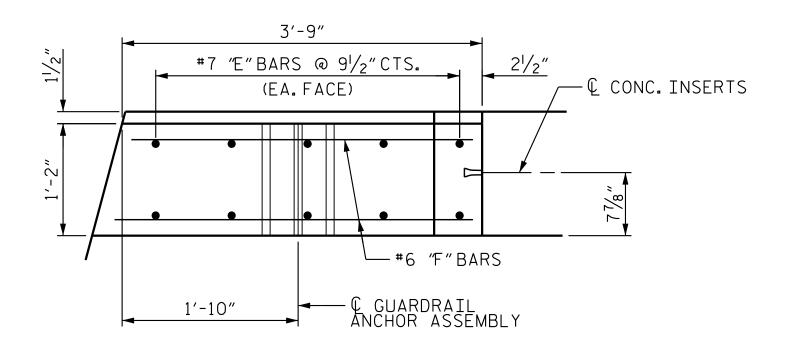
CITY OF CONCORD, NC STANDARD

END OF RAIL DETAILS

FOR ONE OR TWO BAR METAL RAILS

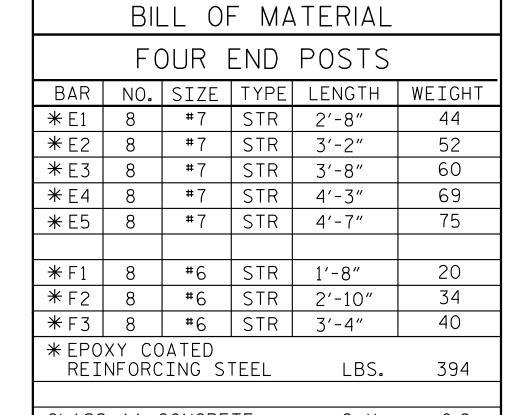
FOR ONE OR TWO BAR ME

2/230224244E9...

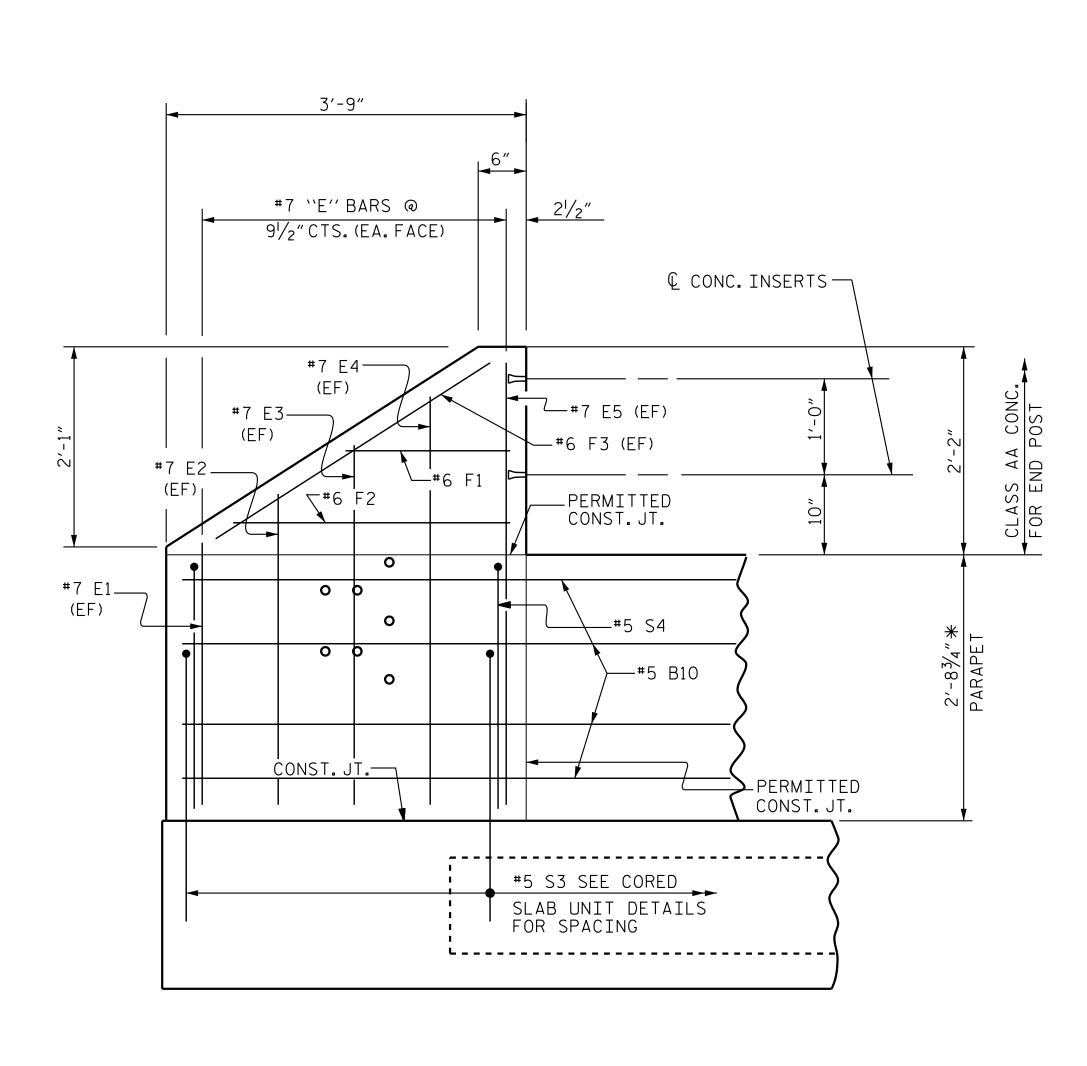

REVISIONS

REVISIONS

T CONSIDERED NO. BY: DATE: NO. BY: DATE: S-12

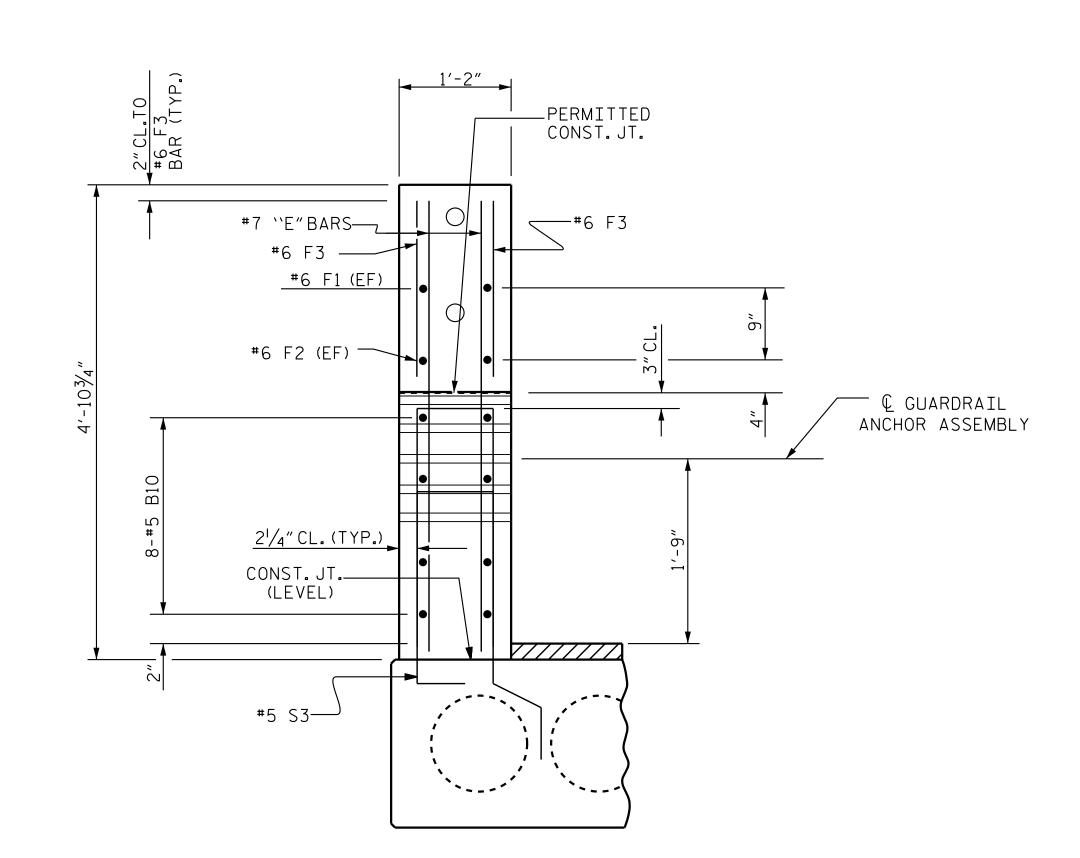

NLESS ALL S COMPLETED 2 4 2 25

STD. NO. BMR2



NOTES

ALL REINFORCING STEEL IN PARAPETS AND END POSTS SHALL BE EPOXY COATED.



CLASS AA CONCRETE C.Y. 0.8 * DENOTES EPOXY COATED REINFORCING

ELEVATION

* VARIES (SEE "GUTTERLINE ASPHALT THICKNESS & PARAPET HEIGHT" TABLE)

END VIEW

K. A. WOYAHN DATE: 5/23/23 CHECKED BY: T.R.DUDECK DATE: 08/23/23 T.R.DUDECK DATE: 02/23/24

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024

www.stantec.com

License No. F-0672

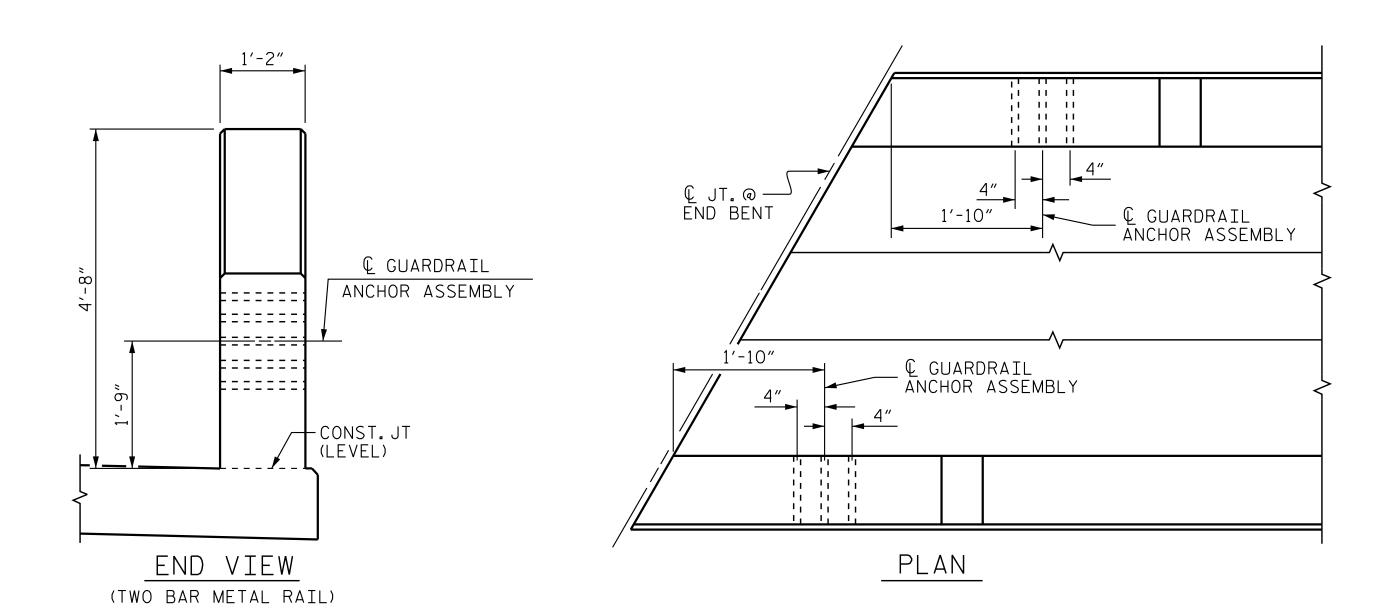
CITY OF CONCORD, NC SUPERSTRUCTURE CONCRETE
PARAPET AND END POST DETAILS

13+82.50

_ COUNTY

SHEET NO. REVISIONS NO. BY: S-13 DATE: DATE: BY: DOCUMENT NOT CONSIDERED 1 SIGNATURES COMPLETED 2 TOTAL SHEETS 25

PROJECT NO. N/A


CABARRUS

STATION:__

(EF) DENOTES BAR IN EA. FACE

(SEE SHEET S-9)

GUARDRAIL ANCHOR ASSEMBLY DETAILS

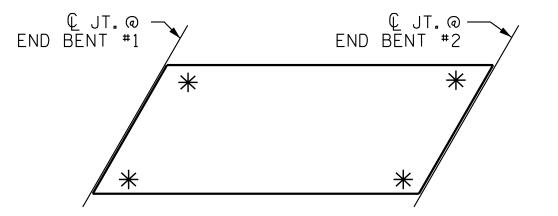
LOCATION OF GUARDRAIL ANCHOR AT END POST

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $1/4^{\prime\prime}$ HOLD DOWN PLATE AND 7 - $1/8^{\prime\prime}$ Ø BOLTS WITH NUTS AND WASHERS.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36.AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111.

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 78' Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.


THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF THE PARAPET. FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLIES WITH BOLTS, NUTS AND WASHERS COMPLETE IN PLACE, SHALL BE INCLUDED IN THE VARIOUS PAY ITEMS.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE END POST TO CLEAR ASSEMBLY BOLTS.

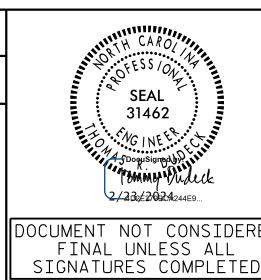
THE 1 $\frac{1}{4}$ " Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

SKETCH SHOWING POINTS OF ATTACHMENT

*LOCATION OF GUARDRAIL ATTACHMENT

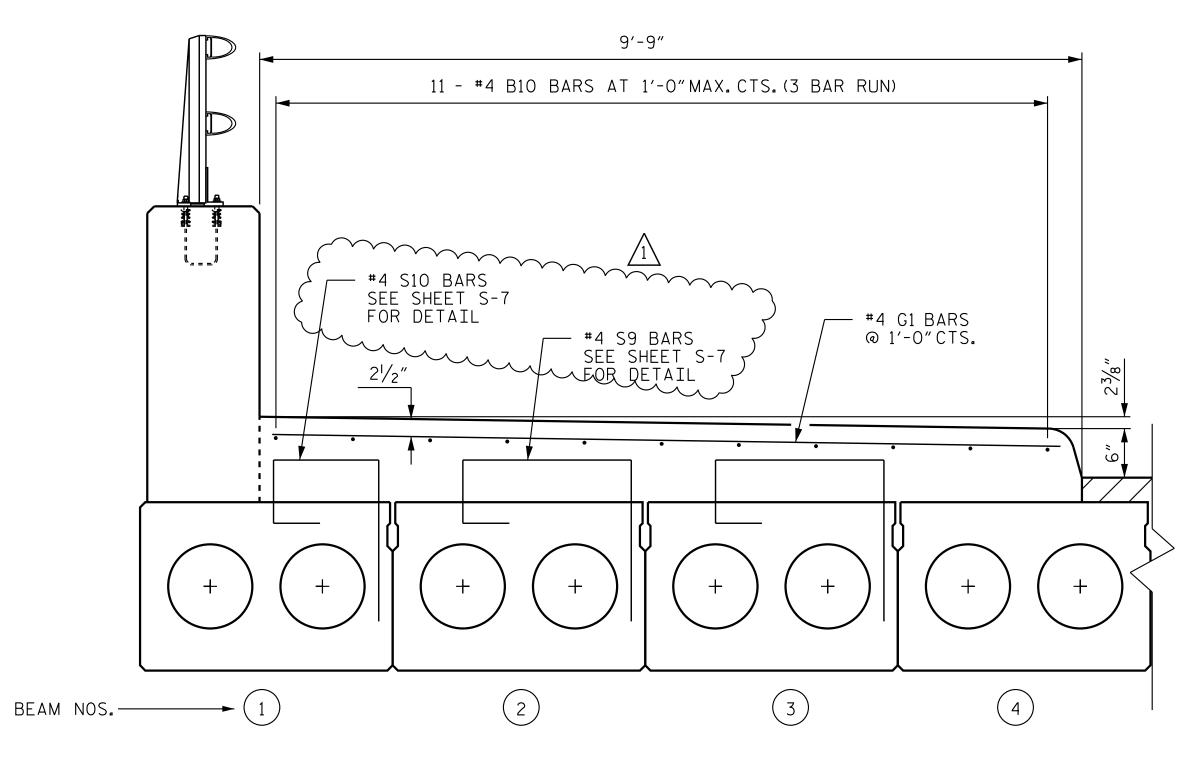
PROJECT NO. N/A

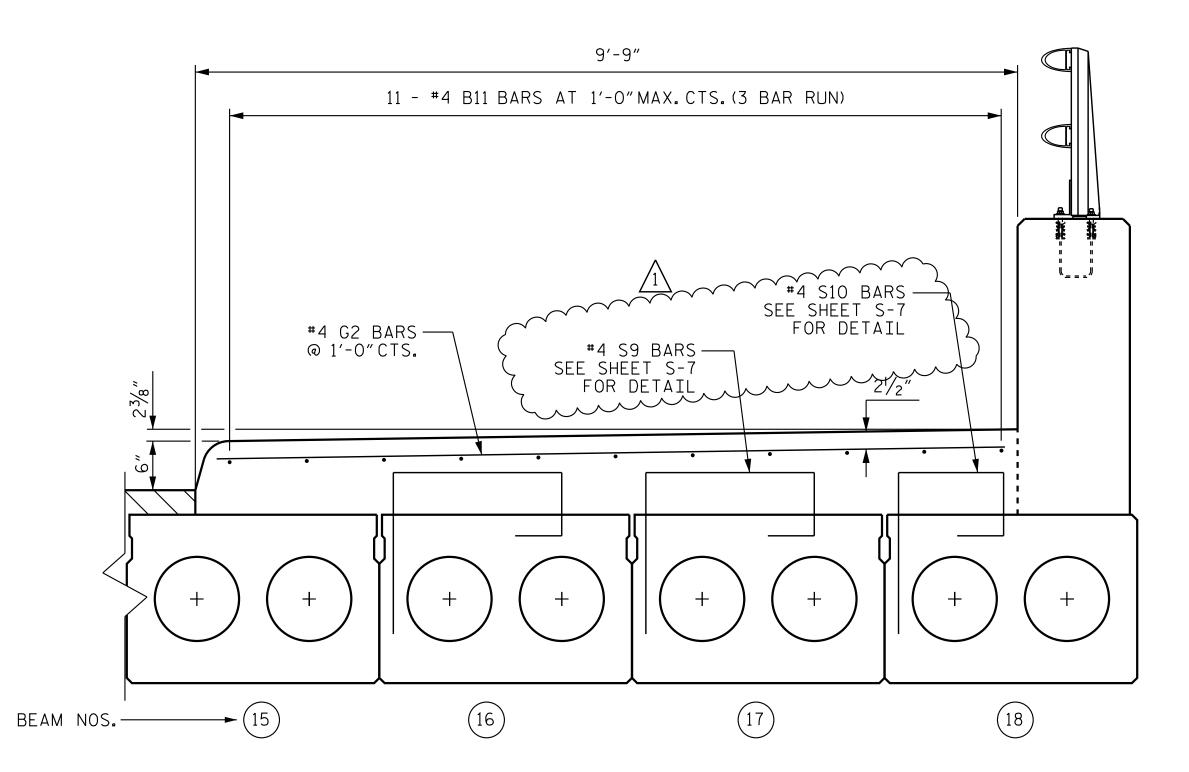
CABARRUS COUNTY


STATION: 13+82.50

DRAWN BY: K.A.WOYAHN DATE: 05/17/23
CHECKED BY: T.R.DUDECK DATE: 08/23/23

DESIGN
ENGINEER
OF RECORD: T.R.DUDECK DATE: 02/23/24


Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672


STANDARD
GUARDRAIL ANCHORAGE
DETAILS
FOR METAL RAILS

/232/2002 4244E9		REVISIONS					
NOT CONSIDERED	NO.	BY:	DATE:	NO.	BY:	DATE:	S-14
UNLESS ALL	1			3			TOTAL SHEETS
RES COMPLETED	2			4			25

(SHT 2a) STD.NO.GRA3

LEFT SIDEWALK

RIGHT SIDEWALK

BILL OF MATERIAL							
LEFT SIDEWALK							
BAR	BAR NO. SIZE TYPE				WEIGHT		
∗ G1	70	#4	STR	9'-3"	433		
∗ B10	33	#4	STR	46′-4″	1021		
* EPOXY COATED REINFORCING STEEL LBS. 1454							
CLASS A	A CONCRET	E		C.Y.	29.3		
		RIGHT	SIDEW	ALK			
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		
* G2	70	#4	STR	9'-3"	433		
★ B11	33	#4	STR	46′-4″	1021		
* EPOXY COATED REINFORCING STEEL LBS. 1454							
CLASS A	A CONCRET	E		C.Y.	29.3		

SPLICE	LENGTHS
BAR SIZE	EPOXY COATED
#4	2'-0"

PROJECT NO. N/A CABARRUS ___ COUNTY 13+82.50 STATION:___

CITY OF CONCORD, NC

SIDEWALK DETAIL

DRAWN BY: K.A. WOYAHN DATE: 05/24/23
CHECKED BY: T.R. DUDECK DATE: 08/23/23 T. R. DUDECK DATE : 02/23/24 Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com

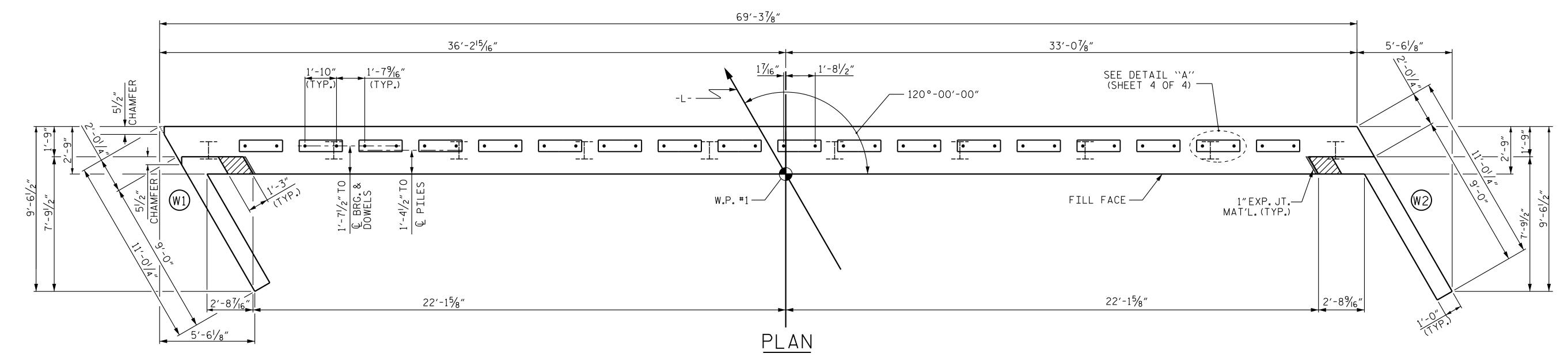
License No. F-0672

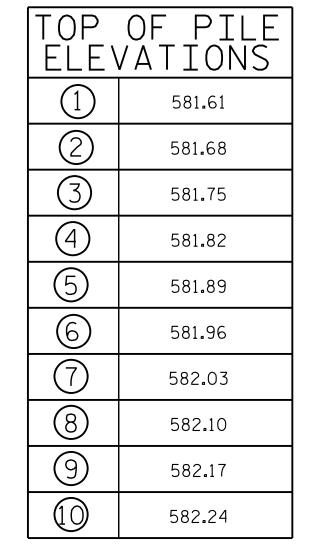
Stantec

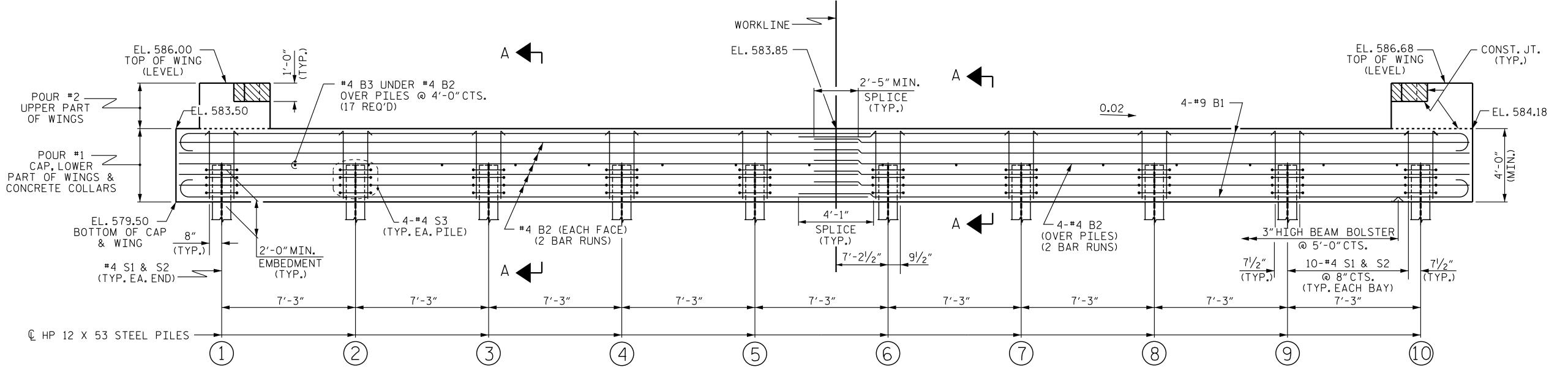
REVISIONS SHEET NO. S-15 NO. BY: DOCUMENT NOT CONSIDERED 1 1 SIGNATURES COMPLETED 2 DATE: DATE: BY: TRD TOTAL SHEETS 25 2/23/24

STD. NO. PCS1

+


NOTES


STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR DOWELS.


THE CONCRETE IN THE SHADED AREA OF THE WING SHALL BE POURED AFTER THE VERTICAL CONCRETE BARRIER RAIL IS CAST IF SLIP FORMING IS USED.

FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4.

FOR WING DETAILS, SEE SHEET 3 OF 4.

ELEVATION

WINGS NOT SHOWN FOR CLARITY. FOR SECTION A-A, SEE SHEET 4 OF 4. CONCRETE COLLARS FOR STEEL PILES NOT SHOWN IN PLAN AND ELEVATION VIEWS FOR CLARITY. PROJECT NO. N/A CABARRUS COUNTY

STATION:_

SHEET 1 OF 4

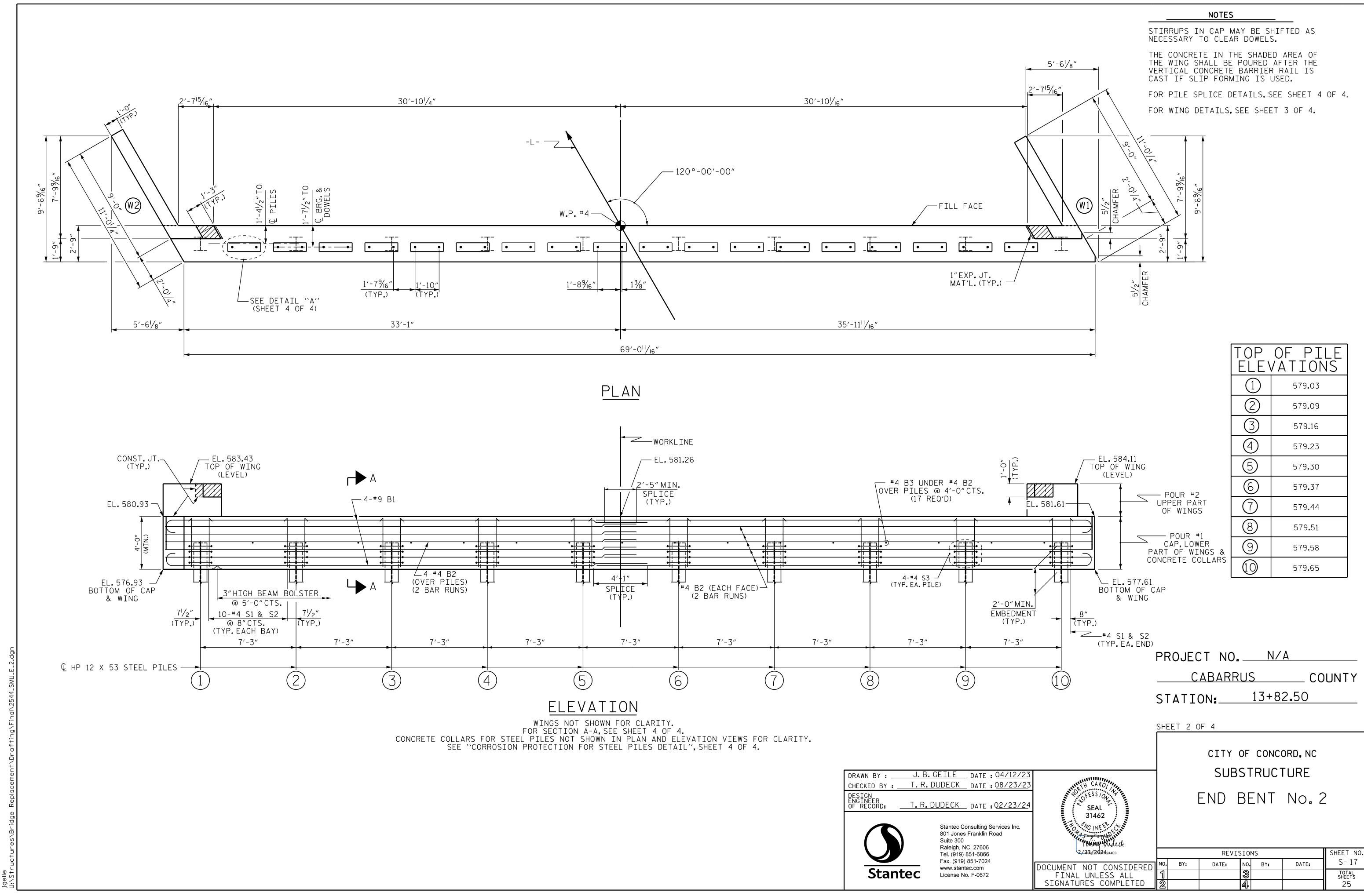
CITY OF CONCORD, NC SUBSTRUCTURE

13+82.50

END BENT No. 1

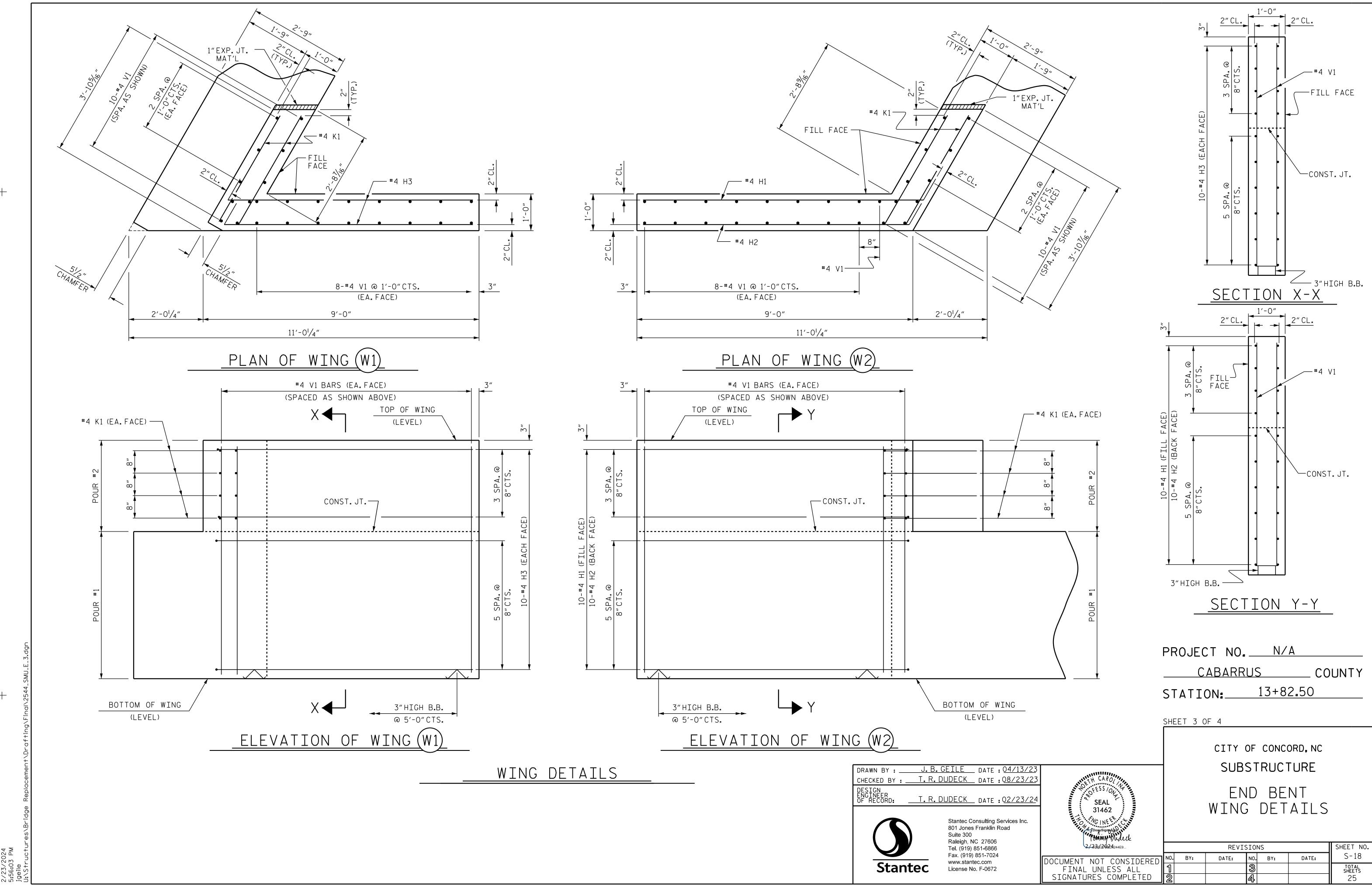
T.R. DUDECK DATE: 02/23/24 Stantec

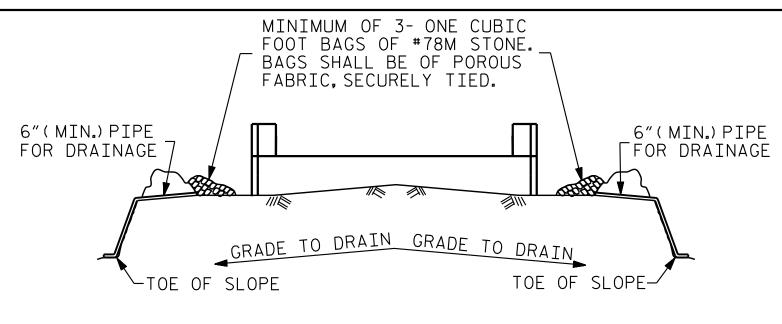
Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672


J.B.GEILE DATE : <u>04/13/2</u>3

T.R.DUDECK DATE: 08/23/23

SEAL 31462

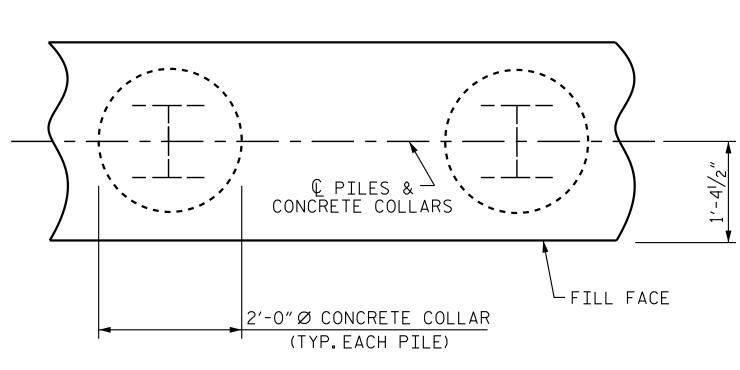

SHEET NO. REVISIONS NO. BY: S-16 DATE: DATE: BY: DOCUMENT NOT CONSIDERED TINAL UNLESS ALL SIGNATURES COMPLETED TOTAL SHEETS 25


STD. NO. EB_39_120S4

2/23/2024 5:56:02 PM

+




BAGGED STONE AND PIPE SHALL BE PLACED IMMEDIATELY AFTER COMPLETION OF END BENT EXCAVATION. PIPE MAY BE EITHER CONCRETE, CORRUGATED STEEL, CORRUGATED ALUMINUM ALLOY, OR CORRUGATED PLASTIC. PERFORATED PIPE WILL NOT BE ALLOWED.

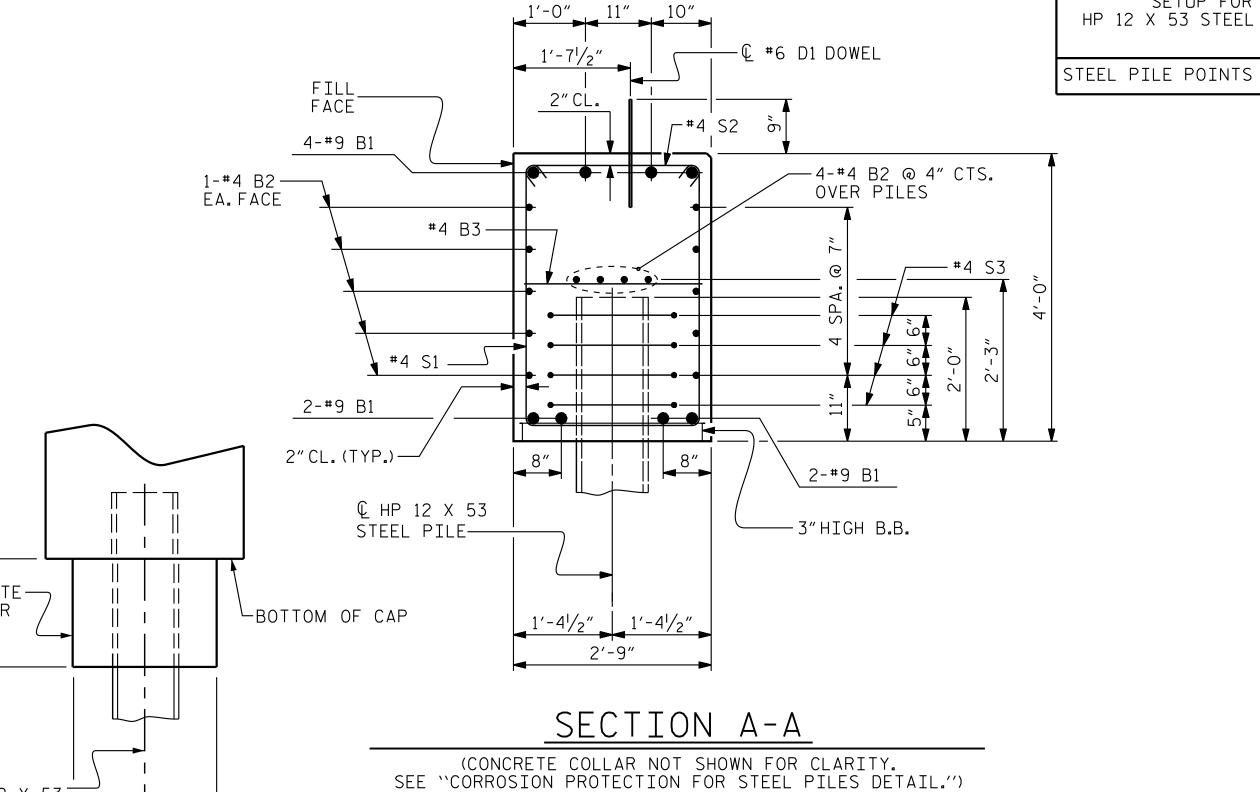
BAGGED STONE SHALL REMAIN IN PLACE UNTIL THE ENGINEER DIRECTS THAT IT BE REMOVED. THE CONTRACTOR SHALL REMOVE AND DISPOSE OF SILT ACCUMULATIONS AT BAGGED STONE WHEN SO DIRECTED BY THE ENGINEER. BAGS SHALL BE REMOVED AND REPLACED WHENEVER THE ENGINEER DETER-MINES THAT THEY HAVE DETERIORATED AND LOST THEIR EFFECTIVENESS.

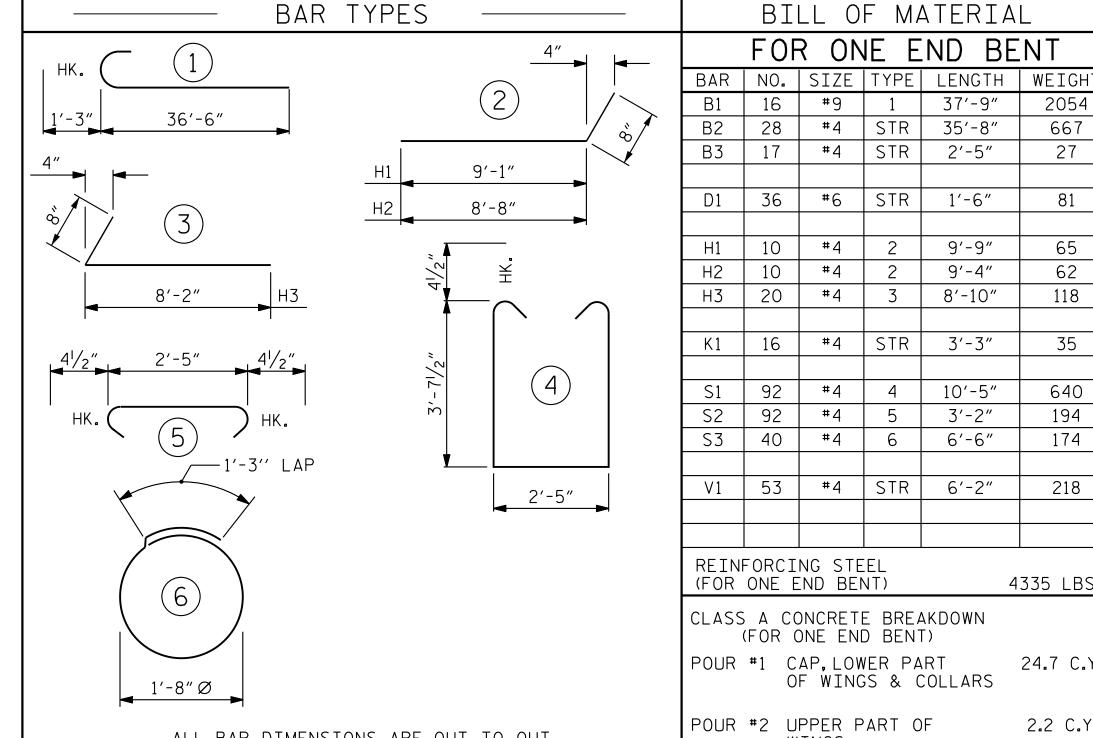
NO SEPARATE PAYMENT WILL BE MADE FOR THIS WORK AND THE ENTIRE COST OF THIS WORK SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR THE SEVERAL PAY ITEMS.

TEMPORARY DRAINAGE AT END BENT

PLAN

(END BENT No.1 SHOWN, END BENT No.2 SIMILAR BY ROTATION)


CORROSION PROTECTION FOR STEEL PILES DETAIL


(END BENT No.1 SHOWN, END BENT No.2 SIMILAR BY ROTATION)

CONCRETE — COLLAR © HP 12 X 53 TEEL PILE 2'-0" ELEVATION

BACK GOUGE DETAIL B PILE VERTICAL PILE HORIZONTAL OR VERTICAL 60° ⁺10° T VT 0" TO 1/8" 0" TO 1/8" DETAIL A DETAIL B POSITION OF PILE DURING WELDING.

PILE SPLICE DETAILS

#4 | STR | 35'-8" B2 | 28 | 667 #4 | STR | B3 | 17 | 2′-5″ 27 #6 | STR | 1′-6″ D1 | 36 | H1 | 10 | #4 2 9′-9″ 65 H2 | 10 | #4 2 9′-4″ 62 H3 | 20 | #4 8′-10″ 118 #4 | STR | 3'-3" K1 | 16 | 35 S1 | 92 | #4 | 4 | 10′-5″ 640 S2 | 92 | #4 | 5 3′-2″ 194 S3 | 40 | #4 6′-6″ 174 V1 | 53 | #4 | STR | 6'-2" 218 REINFORCING STEEL (FOR ONE END BENT) 4335 LBS CLASS A CONCRETE BREAKDOWN (FOR ONE END BENT)

TOTAL CLASS A CONCRETE

BILL OF MATERIAL

16

#9

FOR ONE END BENT

37′-9″

2054

26.9 C.Y.

POUR #1 CAP, LOWER PART 24.7 C.Y. OF WINGS & COLLARS 2.2 C.Y. POUR #2 UPPER PART OF ALL BAR DIMENSIONS ARE OUT TO OUT. WINGS END BENT No. 1 END BENT No. 2

HP 12 X 53 STEEL PILES

LIN.FT.= 300 LIN.FT.= 200 NO: 10 NO: 10 PILE DRIVING EQUIPMENT PILE DRIVING EQUIPMENT SETUP FOR SETUP FOR HP 12 X 53 STEEL PILES HP 12 X 53 STEEL PILES NO: 10

NO: 10

HP 12 X 53 STEEL PILES

PROJECT NO. N/A CABARRUS COUNTY 13+82.50 STATION:_

SHEET 4 OF 4

CITY OF CONCORD, NC SUBSTRUCTURE

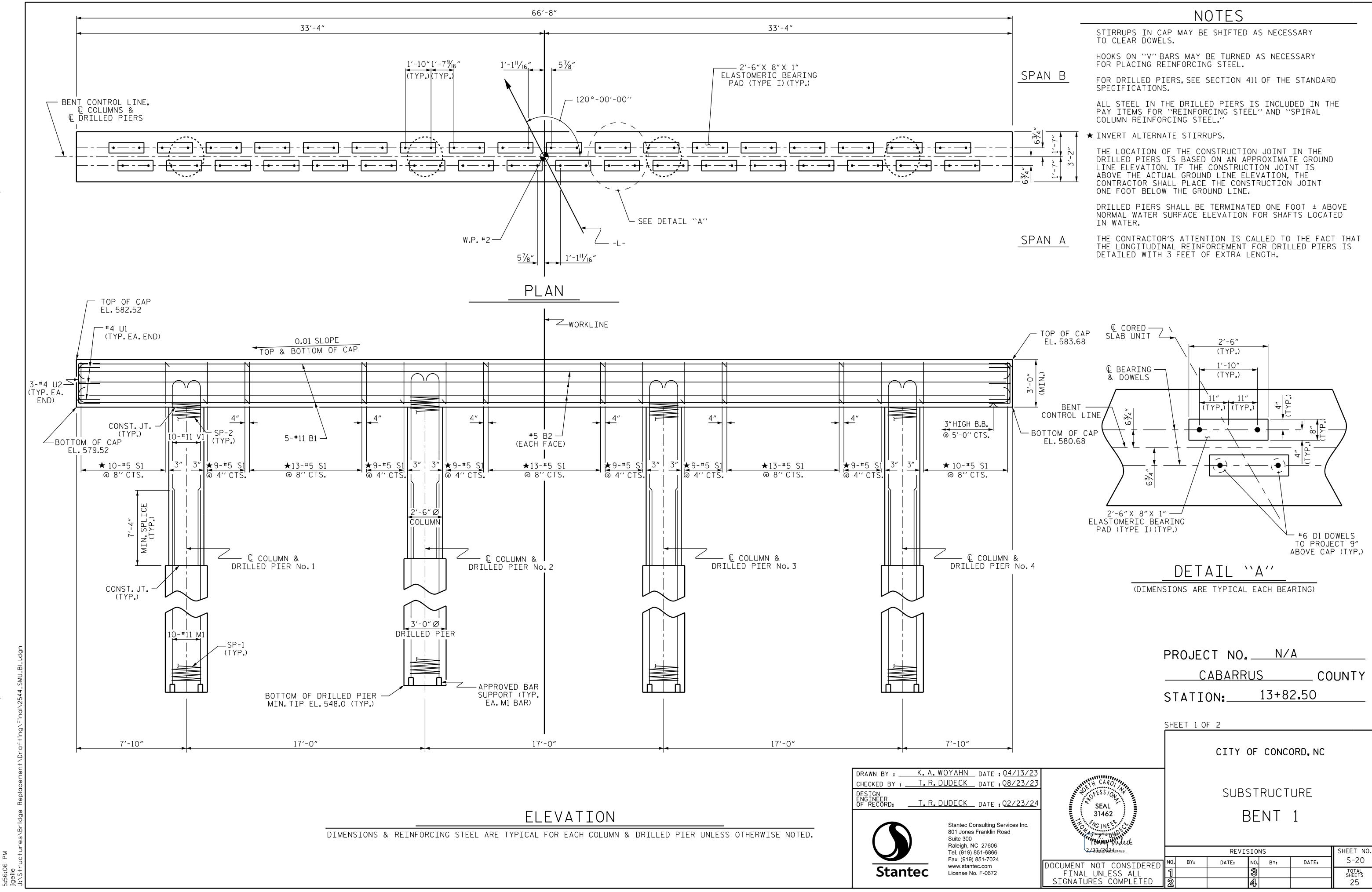
END BENT Nos.1 & 2 DETAILS

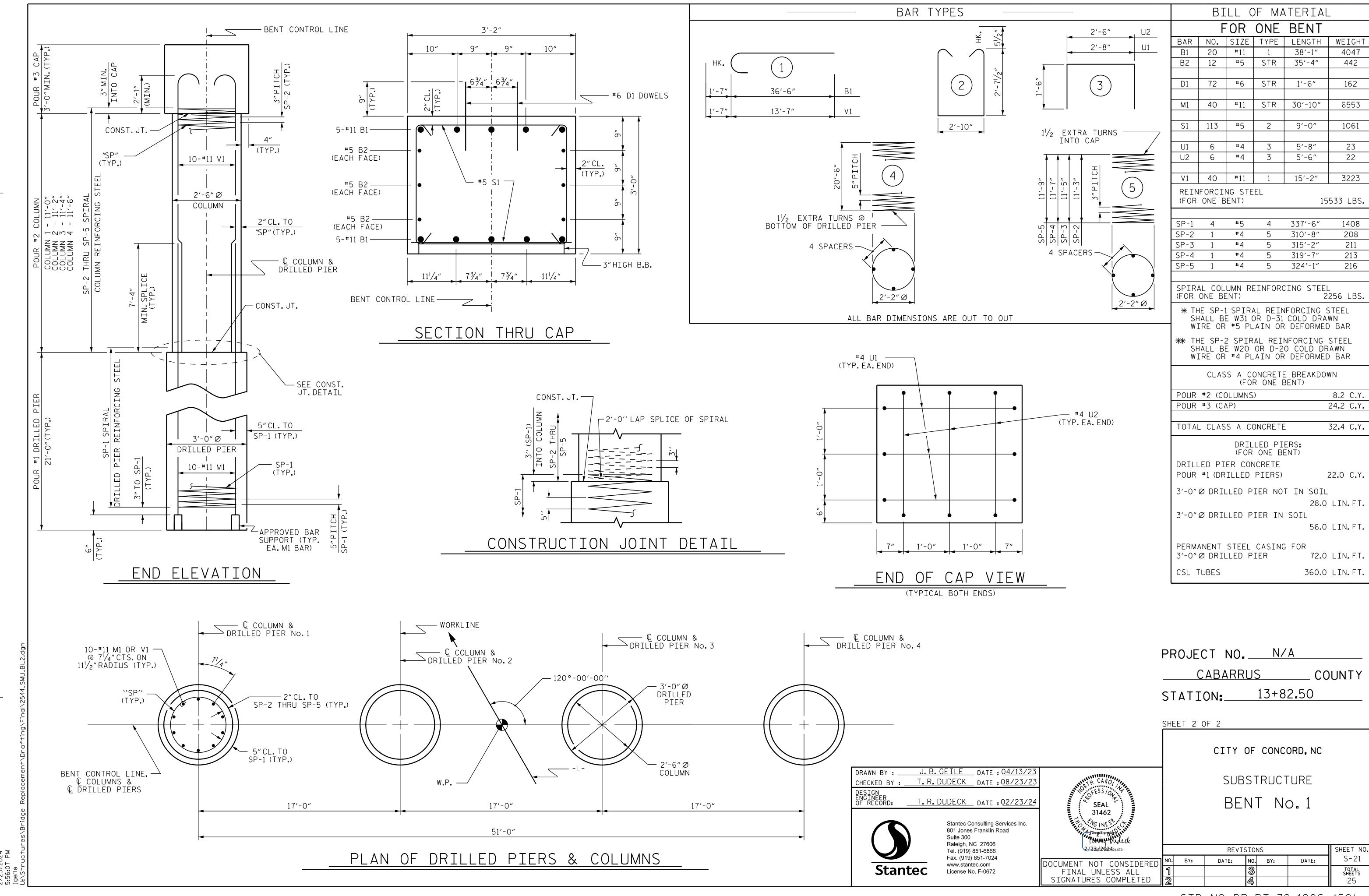
Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

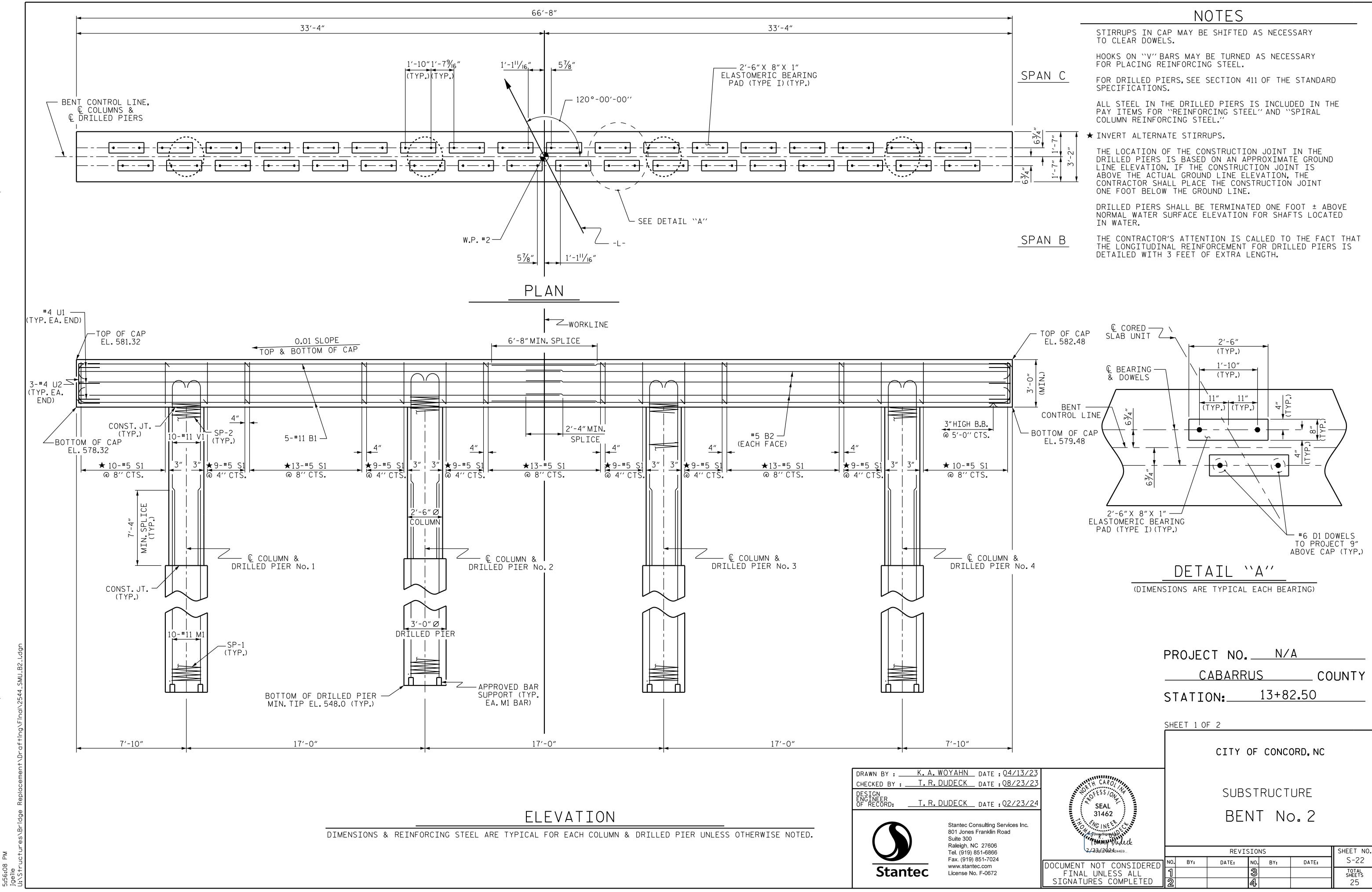
J. B. GEILE DATE: 04/13/23

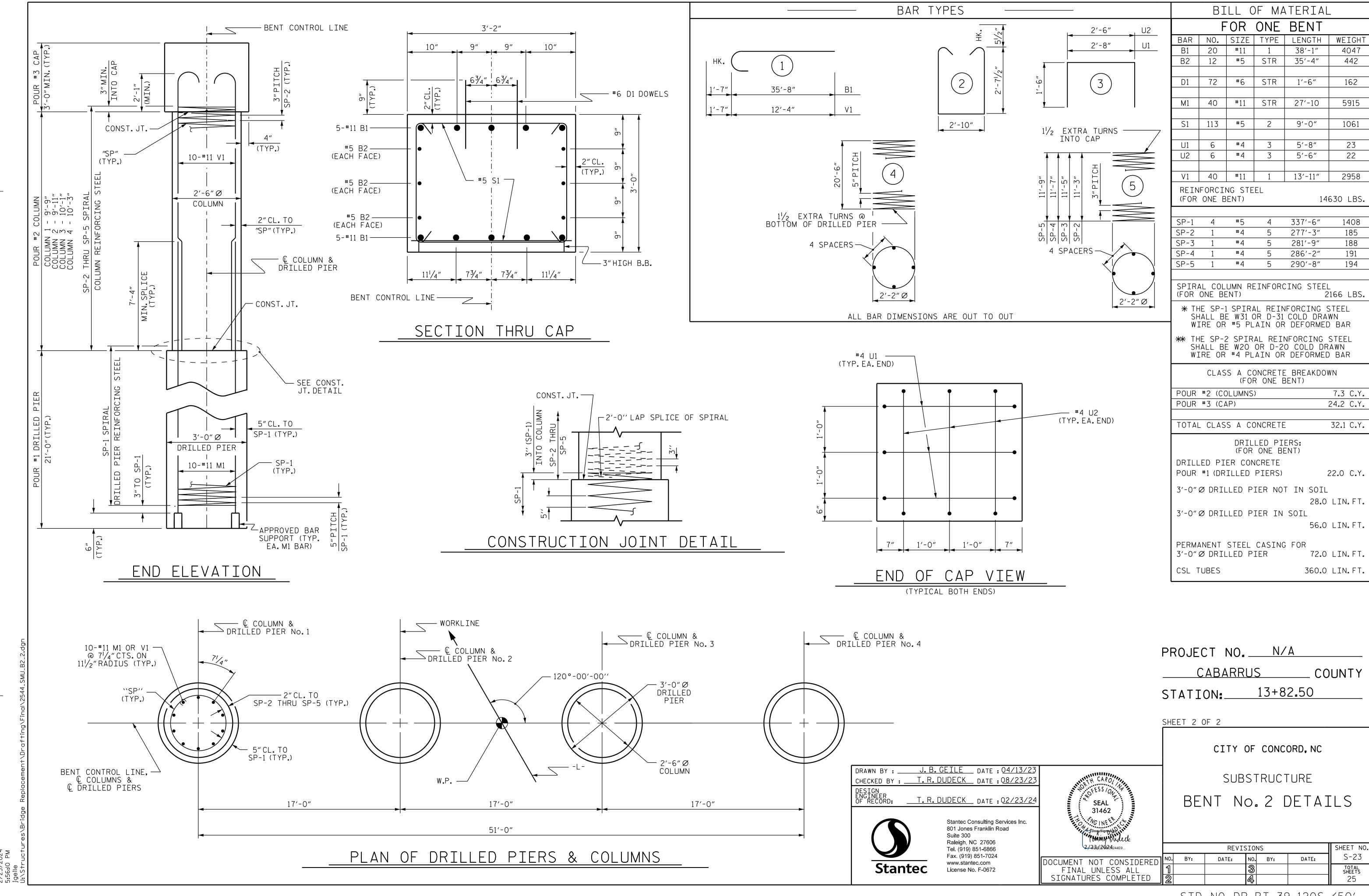
T.R. DUDECK DATE : 02/23/24

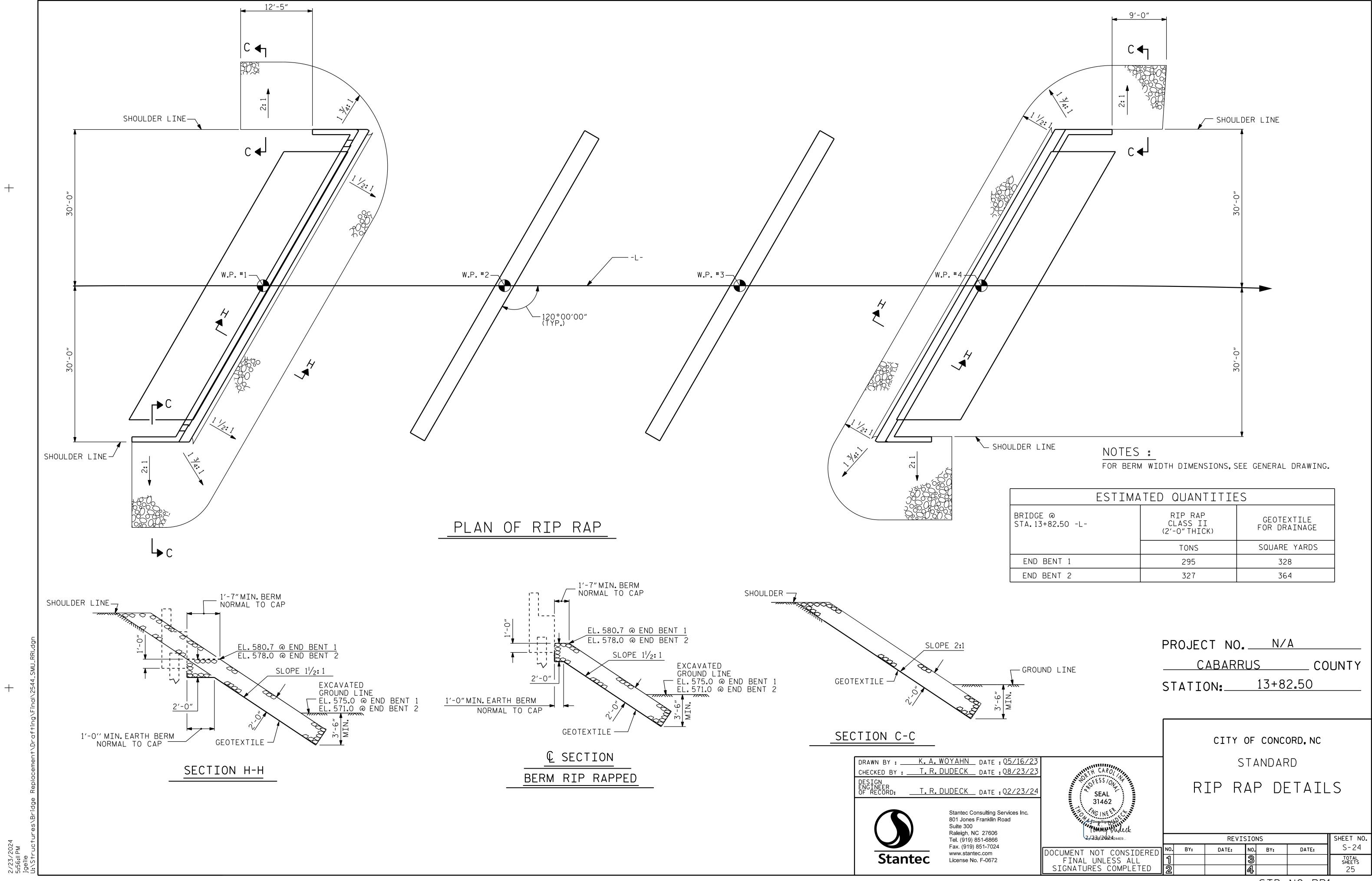
CHECKED BY: T.R. DUDECK DATE: 08/24/23

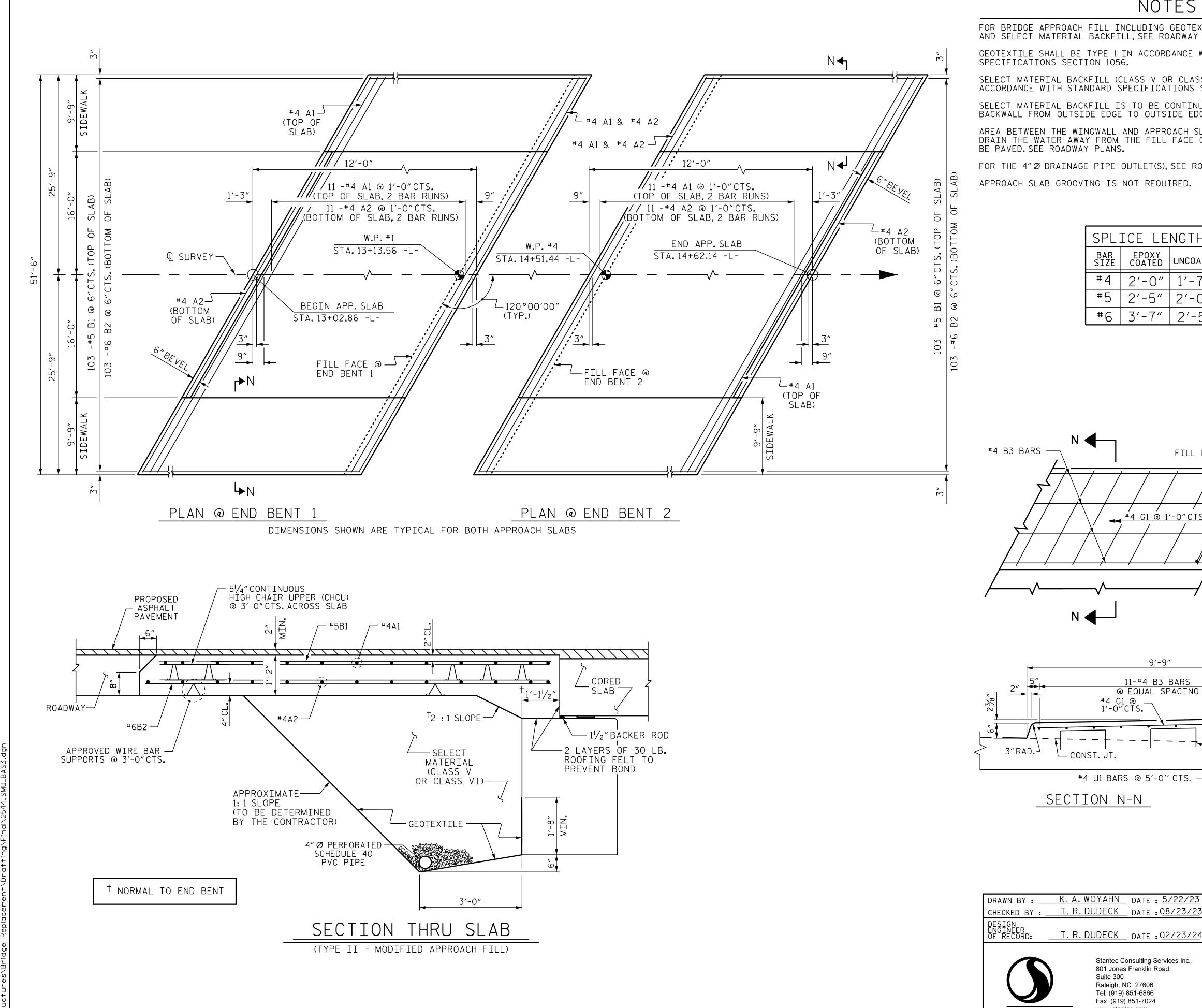

SEAL 31462 DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


SHEET NO. REVISIONS S-19 NO. BY: DATE: DATE: BY:


STD. NO. EB_39_120S4


TOTAL SHEETS

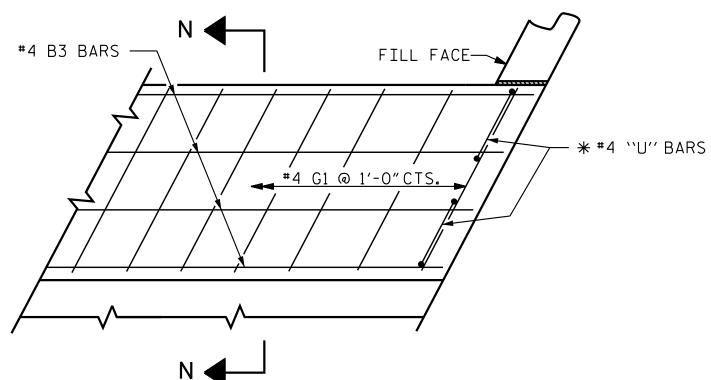

25

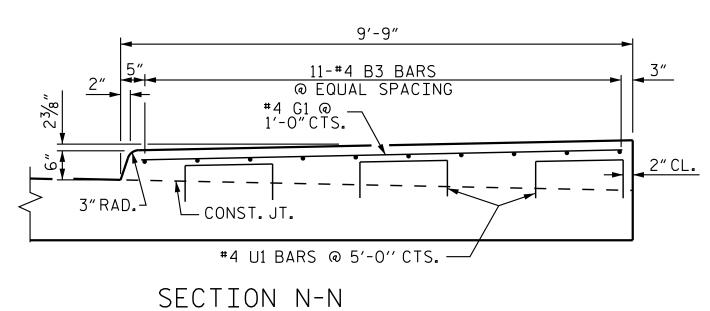


NOTES

FOR BRIDGE APPROACH FILL INCLUDING GEOTEXTILE, 4" Ø DRAINAGE PIPE, AND SELECT MATERIAL BACKFILL, SEE ROADWAY PLANS.

GEOTEXTILE SHALL BE TYPE 1 IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS SECTION 1056.


SELECT MATERIAL BACKFILL (CLASS V OR CLASS VI) SHALL BE IN ACCORDANCE WITH STANDARD SPECIFICATIONS SECTION 1016.

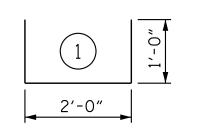

SELECT MATERIAL BACKFILL IS TO BE CONTINUOUS ALONG FILL FACE OF BACKWALL FROM OUTSIDE EDGE TO OUTSIDE EDGE OF APPROACH SLAB.

AREA BETWEEN THE WINGWALL AND APPROACH SLAB SHALL BE GRADED TO DRAIN THE WATER AWAY FROM THE FILL FACE OF THE BRIDGE AND SHALL BE PAVED. SEE ROADWAY PLANS.

FOR THE 4" Ø DRAINAGE PIPE OUTLET(S), SEE ROADWAY STANDARD DRAWINGS. APPROACH SLAB GROOVING IS NOT REQUIRED.

SPL	ICE LE	NGTHS
BAR SIZE	EPOXY COATED	UNCOATE
#4	2'-0"	1'-7"
#5	2'-5"	2'-0"
#6	3′-7″	2′-5″

BILL OF MATERIAL							
APPROACH SLAB AT EB 1							
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		
* A1	2,2	#. 4	SŢR	30′6″	448		
А	2,2	#. 4	SŢR	30′4″	446		
•	•	•	•	•	•		
 ₩ B1	1Q3	# .5	SŢR	11'-2	1200		
В2	1Q3	#.6	SŢR	11'-8"	1805.		
* B3	2.2	#. 4	SŢR	11'-8"	171.		
* G1	26	#. 4	SŢR	9'-1"	158		
* ⊔1	12	#. 4	1	4'-0"	32.		
REINF	ORCI	NG STE	EL	LBS.	2251.		


	NFORC	ING S	TEEL	LBS.	2009		
CLASS AA CONCRETE C.Y. 34.6							
ΑF	PPRC)ACH	SLA	B AT E	B 2		
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		
∗ ∆1	22	#4	STR	30′-6″	448		
Δ	22	#4	STR	30'-4"	446		
∗ B1	103	#5	STR	11'-2	1200		
В2	103	#6	STR	11'-8"	1805		
∗ B3	22	#4	STR	11'-8"	171		
∗ G1	14	#4	STR	9'-1"	158		
+ U1	12	#4	1	4'-0"	32		
					·		

* EPOXY COATED

REINFORCING STEEL	LBS.	2251.
←EPOXY COATED REINFORCING STEEL	LBS.	2009
LACC AA CONCDETE	C V	710

BAR TYPES

CLASS AA CONCRETE

ALL BAR DIMENSIONS ARE OUT TO OUT

PROJECT NO. N/A CABARRUS COUNTY

13+82.50 STATION:_

CITY OF CONCORD, NC

STANDARD

BRIDGE APPROACH SLAB FOR PRESTRESSED CONCRETE CORED SLAB

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606 Tel. (919) 851-6866 Fax. (919) 851-7024 www.stantec.com License No. F-0672

K. A. WOYAHN DATE : 5/22/23

T. R. DUDECK DATE : 02/23/24

SHEET NO. **REVISIONS** S-25 NO. DATE: DATE: BY: BY: DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED TOTAL SHEETS 25

STD. NO. BAS3

STANDARD NOTES

DESIGN DATA:

LIVE LOAD ----- SEE PLANS IMPACT ALLOWANCE - - - - - - - - - - - SEE A.A.S.H.T.O. STRESS IN EXTREME FIBER OF STRUCTURAL STEEL - AASHTO M270 GRADE 36 - - 20,000 LBS. PER SQ. IN. - AASHTO M270 GRADE 50W - - 27,000 LBS.PER SQ.IN. - AASHTO M270 GRADE 50 - - 27,000 LBS.PER SQ.IN. REINFORCING STEEL IN TENSION - GRADE 60 - - - 24,000 LBS. PER SQ. IN. CONCRETE IN SHEAR ------- SEE A.A.S.H.T.O. STRUCTURAL TIMBER - TREATED OR UNTREATED EXTREME FIBER STRESS - - - 1,800 LBS. PER SQ. IN. COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER ---- 375 LBS.PER SQ.IN. EQUIVALENT FLUID PRESSURE OF EARTH - - - - 30 LBS.PER CU.FT.

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2018 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

(MINIMUM)

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS. ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED $\frac{3}{4}$ " WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO $1\frac{1}{2}$ RADIUS WHICH IS BUILT INTO CURB FORMS; CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4" FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE.

ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS, AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE $\frac{7}{8}$ " \varnothing SHEAR STUDS FOR THE $\frac{3}{4}$ " Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - $\frac{7}{8}$ " \alpha STUDS FOR 4 - $\frac{3}{4}$ " \alpha STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF 1/8" Ø STUDS ALONG THE BEAM AS SHOWN FOR $\frac{3}{4}$ " Ø STUDS BASED ON THE RATIO OF 3 - $\frac{7}{8}$ " Ø STUDS FOR 4 - $\frac{3}{4}$ " Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-0".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES, ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY 1/16 INCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB, UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB.

METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THÉ SPECIFICATIONS, BUT THÉ REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

ENGLISH

BRIDGE ANALYSIS & RATING

BRIDGE NO.:	120320
	· · · · · · · · · · · · · · · · · · ·

COUNTY: <u>CABARRUS</u>

MUNICIPALITY: <u>CONCORD</u>

I HEREBY CERTIFY THAT THESE CALCULATIONS CONTAINED HEREIN WERE PREPARED BY ME OR UNDER MY DIRECT SUPERVISION.

DocuSigned by:

-A8C764871F8049C...

James J Barcomb, PE Professional Engineer State of North Carolina License No. 22997

RATING SUMMARY SHEET								
BRIDGE NU	JMBER: 1	20320	С	OMPILED BY:	J	JB	DATE:	5/26/2022
MUNIC	IPALITY: CO	NCORD	C	CHECKED BY:	DN	MS	DATE:	7/14/2022
For Non- Interstate & NC Routes	MEMBER:	STEEL PL FLOORS x 3"D x .2	(9"W	BEAMS 1-5 INTERIOR BEAM (W21x55)	BEAMS 1-5 EXTERIOR BEAM (W21x55)	BEAMS 1-5 INTERIOR BEAM SHEAR	BEAMS 6-8 INTERIOR BEAM SHEAR	
	Span Length			39.33 FT	39.33 FT	39.33 FT	39.33 FT	
	Beam Spacing			3.00 FT	3.00 FT	3.00 FT	3.00 FT	
	(C=Continuous)							
	Analysis Method			LFR	LFR	LFR	LFR	
HS Inventor	y Rating	44.5 TOI	NS	42.6 TONS	59.1 TONS	25.6 TONS	0.0 TONS	
HS Operatin	ng Rating	55.6 TO	NS	71.2 TONS	98.8 TONS	33.2 TONS	0.0 TONS	
		SNSH	13.5	28.0 TONS	38.9 TONS	23.7 TONS	0.0 TONS	
		SNGARBS2	20	33.6 TONS	46.6 TONS	25.9 TONS	0.0 TONS	
		SNAGRIS2	22	36.2 TONS	50.2 TONS	26.9 TONS	0.0 TONS	
		SNCOTTS3	27.25	28.4 TONS	39.4 TONS	24.0 TONS	0.0 TONS	
		SNAGGRS4	34.925	32.5 TONS	45.1 TONS	26.8 TONS	0.0 TONS	
		SNS5A	35.55	32.4 TONS	45.0 TONS	28.2 TONS	0.0 TONS	
		SNS6A	39.95	34.5 TONS	47.9 TONS	29.6 TONS	0.0 TONS	
		SNS7B	42	34.7 TONS	48.2 TONS	31.4 TONS	0.0 TONS	
		TNAGRIT3	33	35.2 TONS	48.8 TONS	28.6 TONS	0.0 TONS	
		TNT4A	33.075	35.3 TONS	48.9 TONS	27.5 TONS	0.0 TONS	
		TNAGRIT4	43	39.4 TONS	54.6 TONS	29.2 TONS	0.0 TONS	
		TNAGT5A	45	38.8 TONS	53.9 TONS	31.8 TONS	0.0 TONS	
		TNAGT5B	45	37.4 TONS	51.8 TONS	39.2 TONS	0.0 TONS	
ts:		TNT6A	41.6	37.9 TONS	52.6 TONS	33.8 TONS	0.0 TONS	
Comments:		TNT7A	42	39.0 TONS	54.1 TONS	30.0 TONS	0.0 TONS	
Com		TNT7B	42	39.8 TONS	55.3 TONS	48.6 TONS	0.0 TONS	
Calculated F	Posting:	SV TO	NS	TTST	TONS	D	esign Loading:	HS 20
Controlling N	Member:	BEAMS	S 6-8 INT	ERIOR BEAM	SHEAR	lnv	entory Rating:	HS 0
Existing Pos	isting Posting: SV 25 TON		IS, TTST 30 TC	ONS	Operating Rating:		HS 0	
Recommended Posting: CLOSE NO			RTHBOUND L	ANE		T7B Rating:	0 TONS	
REASON	FOR POSTING C	HANGE:			Overload Brid	idge Only: YES		NO
	NED CONDITION (DUCED SHEAR C				HS Operating 3 Tons or Mo		x	
Item 70: 1							1	

Municipality: Concord
Rated By: JJB Date: 5/26/2022
Checked By: DMS Date: 7/14/2022

Steel Plank Deck Rating Data: 120320

Analysis and Rating References:

- 1. AASHTO, Manual for Condition Evaluation of Bridges, 1994, with Interim's through 2003.
- 2. AASHTO, Standard Specifications for Highway Bridges, 2002.
- 3. AISC, Manual of Steel Construction, 3rd Edition.

Structure Data:

Girder Spacing: Space := $3 \cdot \text{ft}$

Effective Span: Span := $2.656 \cdot \text{ft}$

Asphalt Wearing Surface Thickness: (Total thickness including Deck Plank) AWS := $4.5 \cdot in$

Year Built: $Y_{built} := 1983$

Plank Thickness: (3 Gage) Pthick := $.179 \cdot in$

Plank Depth: Pdepth := $3 \cdot in$ Plank Width: Pwidth := $9 \cdot in$ Plank Flange Width: $Pb_{f} := 3.875 \cdot in$

 $S_x := 0.264 \cdot in^3$ Plank Deck Section Modulus: (per inch width)

Plank Weight: Pweight := 11.5 · psf

Percent Effective: PEFF := 95%

Material Data:

Plank Deck Yield Strength: $F_v := 36000 \cdot psi$ Asphalt Wearing Surface Unit Weight: $\gamma_{\rm Asp} := 144 \cdot \rm pcf$

Municipality: <u>Concord</u>
Rated By: <u>JJB</u> Date: <u>5/26/2022</u>
Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Moment Capacity:

Compression Flange Element Check:

$$CFE := \frac{Pb_f}{Pthick}$$

$$CFE = 21.65$$

(Ref 2, Eq. 10-132)

Limit 1:
$$CFE_1 := \frac{6140}{\sqrt{F_y \cdot \frac{1}{p_{gi}}}}$$

Limit 2:
$$CFE_2 := \frac{13300}{\sqrt{F_y \cdot \frac{1}{psi}}}$$

$$CFE_1 = 32.36$$

$$CFE_2 = 70.1$$

Buckling Stress 1:

$$c: \frac{13300 - \text{CFE} \cdot \sqrt{F_y \cdot \frac{1}{\text{psi}}}}{7160}$$

$$c = 1.28$$

$$F_{cr1} := 0.592 \cdot F_y \cdot \left(1 + 0.687 \cdot \sin \left(\frac{c \cdot \pi}{2} \right) \right)$$
 $F_{cr1} = 34522 \text{ psi}$

$$F_{cr1} = 34522 \text{ psi}$$

Buckling Stress 2:

$$F_{cr2} := 105 \cdot \left(\frac{1}{CFE}\right)^2 \cdot 10^6 \cdot psi$$

$$F_{cr2} = 2 \times 10^5 \, ps$$

 $F_{cr2} = 2 \times 10^5 \text{ psi}$ (Ref 2, Eq. 10-137)

Design Stress:

$$F_{cr} := F_y \text{ if } CFE \le CFE_1$$

$$F_{cr} = 36000 \, psi$$

$$\begin{split} F_{cr} &:= \quad \begin{array}{ll} F_y & \text{if } CFE \leq CFE_1 \\ \\ F_{cr1} & \text{if } CFE_1 < CFE \wedge CFE \leq CFE_2 \\ \\ F_{cr2} & \text{if } CFE_2 \leq CFE \\ \end{array} \end{split}$$

$$F_{cr2}$$
 if $CFE_2 \le CFE$

Moment Capacity:

$$M_u := F_{cr} \cdot S_x \cdot 12$$

$$M_u = 9504 \cdot lbf \cdot ft$$

(Ref 2, Eq. 10-130)

Inventory Moment Capacity:

$$M_{inv} := M_{ii} \cdot PEFF$$

 $M_{\rm inv} = 9028.8 \cdot lbf \cdot ft$

Operating Moment Capacity:

$$M_{onr} := 1.25 M_{inv}$$

 $M_{opr} = 11286.00 \cdot lbf \cdot ft$

Dead Load Moment:

Plank Dead Load:

$$W_{plank} := Pwidth \cdot Pweight$$

$$W_{plank} = 8.63 \cdot plf$$

Asphalt Dead Load:

$$W_{asp} := \gamma_{Asp} \cdot \left(AWS - \frac{Pdepth}{2}\right) \cdot Pwidth$$

$$W_{asp} = 27.00 \cdot plf$$

Total Dead Load:

$$W_{Dead} := W_{plank} + W_{asp}$$

$$W_{Dead} = 35.63 \cdot plf$$

Dead Load Moment:

$$M_{dl} := 0.10 \cdot W_{Dead} \cdot Span^2$$

$$M_{dl} = 25.13 \cdot lbf \cdot ft$$

Municipality: <u>Concord</u>
Rated By: <u>JJB</u> Date: <u>5/26/2022</u>
Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Live Load Moment:

Continuity Factor: cf := 0.8

(Ref. 2, Sec. 3.8) Impact Factor: Imp := 1.0

Wheel Loads:

Vehicle	Weight (W)	P _{live}
SNSH	13.5 tons	11000 lbf
SNGARBS2	20.0 tons	11750 lbf
SNAGRIS2	22.0 tons	11000 lbf
SNCOTTS3	27.25 tons	12500 lbf
SNAGGRS4	34.925 tons	9500 lbf
SNS5A	35.55 tons	10500 lbf
SNS6A	39.95 tons	10500 lbf
SNS7B	42.0 tons	10500 lbf
TNAGRIT3	33.0 tons	11000 lbf
TNT4A	33.075 tons	10500 lbf
TNAGRIT4	43.0 tons	11000 lbf
TNAGT5A	45.0 tons	11000 lbf
TNAGT5B	45.0 tons	10500 lbf
TNT6A	41.6 tons	10500 lbf
TNT7A	42.0 tons	10500 lbf
TNT7B	42.0 tons	10500 lbf
H 20	20	16000 lbf
HS 20	36	16000 lbf

(Ref. 2, Sec. 3.7.5)

(Ref. 2, Sec. 3.7.6)

Tire Contact, perpendicular to Traffic:

 $TC_{perp} := 20in$

Distributed Live Load in Span of Deck:

$$w_{live} \coloneqq \frac{P_{live}}{TC_{perp}}$$

Reaction at Left Beam:

 $R_1 := 0.5 \cdot P_{live}$

Municipality: Concord
Rated By: JJB Date: 5/26/2022
Checked By: DMS Date: 7/14/2022

Live Load Moment:

$$a1 := \max \left(0, \frac{\text{Span} - \text{TC}_{\text{perp}}}{2} \right)$$

$$i := 0..17$$

$$M_{LL_i} := R_{l_i} \cdot \left(a1 + \frac{R_{l_i}}{2 \cdot w_{live_i}}\right) \cdot Imp$$

(Ref. 3, Tab. 5-17, 4)

Þ

			_
Vehicle	Weight (W)	M _{live}	P _{live}
SNSH	13.5 tons	5.012 kip∙ft	11000 lbf
SNGARBS2	20.0 tons	5.354 kip·ft	11750 lbf
SNAGRIS2	22.0 tons	5.012 kip·ft	11000 lbf
SNCOTTS3	27.25 tons	5.696 kip·ft	12500 lbf
SNAGGRS4	34.925 tons	4.329 kip∙ft	9500 lbf
SNS5A	35.55 tons	4.785 kip∙ft	10500 lbf
SNS6A	39.95 tons	4.785 kip∙ft	10500 lbf
SNS7B	42.0 tons	4.785 kip∙ft	10500 lbf
TNAGRIT3	33.0 tons	5.012 kip∙ft	11000 lbf
TNT4A	33.075 tons	4.785 kip∙ft	10500 lbf
TNAGRIT4	43.0 tons	5.012 kip·ft	11000 lbf
TNAGT5A	45.0 tons	5.012 kip∙ft	11000 lbf
TNAGT5B	45.0 tons	4.785 kip∙ft	10500 lbf
TNT6A	41.6 tons	4.785 kip∙ft	10500 lbf
TNT7A	42.0 tons	4.785 kip∙ft	10500 lbf
TNT7B	42.0 tons	4.785 kip∙ft	10500 lbf
H 20	20	7.291 kip∙ft	16000 lbf
HS 20	36	7.291 kip∙ft	16000 lbf

Municipality: <u>Concord</u>
Rated By: <u>JJB</u> Date: <u>5/26/2022</u>
Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Moment Rating: (Ref 1, Sec. 6.5.3)

Rating Factors:

$$A1 := 1.0$$

$$A2_{inv} := 1.0$$

$$A1 := 1.0$$
 $A2_{inv} := 1.0$ $A2_{opr} := 1.0$

$$C_1 := M_{inv}$$
 $D := M_{dl}$

$$D := M_{dl}$$

$$L = M_{LL}$$

$$C_2 := M_{opr}$$

$$RFinv := \frac{C_1 - A1 \cdot D}{A2_{inv} \cdot L} \qquad RT_{inv} = RFinv \cdot W \qquad \qquad RFopr := \frac{C_2 - A1 \cdot D}{A2_{opr} \cdot L} \qquad \qquad RT_{opr} = RFopr \cdot W$$

$$RT_{inv} = RFinv \cdot W$$

RFopr :=
$$\frac{C_2 - A1 \cdot E}{A2 \cdot ... \cdot L}$$

$$RT_{opr} = RFopr \cdot W$$

Vehicle	Weight (W)	RF _{inv}	RF _{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	1.796	2.247	24.250 tons	30.330 tons	SNSH
SNGARBS2	20.0 tons	1.682	2.103	33.633 tons	42.065 tons	SNGARBS2
SNAGRIS2	22.0 tons	1.796	2.247	39.519 tons	49.426 tons	SNAGRIS2
SNCOTTS3	27.25 tons	1.581	1.977	43.075 tons	53.874 tons	SNCOTTS3
SNAGGRS4	34.925 tons	2.080	2.601	72.642 tons	90.853 tons	SNAGGRS4
SNS5A	35.55 tons	1.882	2.354	66.899 tons	83.671 tons	SNS5A
SNS6A	39.95 tons	1.882	2.354	75.180 tons	94.027 tons	SNS6A
SNS7B	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	SNS7B
TNAGRIT3	33.0 tons	1.796	2.247	59.278 tons	74.139 tons	TNAGRIT3
TNT4A	33.075 tons	1.882	2.354	62.242 tons	77.846 tons	TNT4A
TNAGRIT4	43.0 tons	1.796	2.247	77.241 tons	96.605 tons	TNAGRIT4
TNAGT5A	45.0 tons	1.796	2.247	80.834 tons	101.098 tons	TNAGT5A
TNAGT5B	45.0 tons	1.882	2.354	84.683 tons	105.913 tons	TNAGT5B
TNT6A	41.6 tons	1.882	2.354	78.285 tons	97.910 tons	TNT6A
TNT7A	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	TNT7A
TNT7B	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	TNT7B
H 20	20	1.235	1.545	24.699	30.891	H 20
HS 20	36	1.235	1.545	44.458	55.604	HS 20

Municipality: Concord
Rated By: JJB Date: 5/26/2022
Checked By: DMS Date: 7/14/2022

Steel Plank Deck Summary Sheet

Year Built: $Y_{built} = 1983$ Steel Yield Strength: $F_{v} = 36000 \cdot psi$

Beam Spacing: Space = $36.00 \cdot in$ Continuity Factor: cf = 0.8

Effective Span: Span = $31.87 \cdot in$ Impact Factor: Imp = 1.00

Total Uniform Dead Load: $W_{Dead} = 35.63 \cdot plf$ Section Modulus: $S_x = 0.264 \cdot in^3$

Total Dead Load Moment: $M_{dl} = 25.13 \cdot lbf \cdot ft$ Percent Effective: PEFF = 95.%

Moment Capacity: $M_u = 9504 \cdot lbf \cdot ft$

Vehicle	Weight (W)	RF_{inv}	RF_{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	1.796	2.247	24.250 tons	30.330 tons	SNSH
SNGARBS2	20.0 tons	1.682	2.103	33.633 tons	42.065 tons	SNGARBS2
SNAGRIS2	22.0 tons	1.796	2.247	39.519 tons	49.426 tons	SNAGRIS2
SNCOTTS3	27.25 tons	1.581	1.977	43.075 tons	53.874 tons	SNCOTTS3
SNAGGRS4	34.925 tons	2.080	2.601	72.642 tons	90.853 tons	SNAGGRS4
SNS5A	35.55 tons	1.882	2.354	66.899 tons	83.671 tons	SNS5A
SNS6A	39.95 tons	1.882	2.354	75.180 tons	94.027 tons	SNS6A
SNS7B	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	SNS7B
TNAGRIT3	33.0 tons	1.796	2.247	59.278 tons	74.139 tons	TNAGRIT3
TNT4A	33.075 tons	1.882	2.354	62.242 tons	77.846 tons	TNT4A
TNAGRIT4	43.0 tons	1.796	2.247	77.241 tons	96.605 tons	TNAGRIT4
TNAGT5A	45.0 tons	1.796	2.247	80.834 tons	101.098 tons	TNAGT5A
TNAGT5B	45.0 tons	1.882	2.354	84.683 tons	105.913 tons	TNAGT5B
TNT6A	41.6 tons	1.882	2.354	78.285 tons	97.910 tons	TNT6A
TNT7A	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	TNT7A
TNT7B	42.0 tons	1.882	2.354	79.037 tons	98.852 tons	TNT7B
H 20	20	1.235	1.545	24.699	30.891	H 20
HS 20	36	1.235	1.545	44.458	55.604	HS 20

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Interior/Exterior Steel Beam

Analysis and Rating References:

- 1. AASHTO, Manual for Condition Evaluation of Bridges, 1994, with Interims through 2003.
- 2. AASHTO, Standard Specifications for Highway Bridges, 2002.

Þ

Sti		4		n -	4-
\TI	71 IC	TI	ro	112	та
UЦ	uu	LU		u	LCI

Span Length: SPAN := 39.33·ft

Beam Spacing: Interior $S_I := 3 \cdot ft$ Exterior $S_E := 3 \cdot ft$

Deck Cantilever Overhang: SO := .5·ft

Timber/Concrete Deck Thickness: DeckT := .375·in (Steel Plank Deck)

 \blacktriangleright

Deck Type: Concrete deck_{type} = " Steel"

Wood Steel

Asphalt Wearing Surface Thickness: AWS := 3·in

Clear Roadway Width: CLRROAD := 22.25 ·ft

(Between Curbs/Sidewalks)

Number of Live Load Lanes: $NLANES := if(CLRROAD < 16 \cdot ft, 1, 2)$ NLANES = 2

Total Sidewalk Width:

SIDEW := 0·ft (Width and thickness of curb/sidewalk portion over ext. beam)

Sidewalk Thickness: SIDET := $0 \cdot in$

Rail Type: Type 23

Rail Width: RAILW := $0 \cdot in$

Date Built: $Y_{built} := 1971$

Municipality: Concord
Rated By: JJB Date: 5/24/2022
Checked By: DMS Date: 7/14/2022

Steel Beam Data:

■ AISC Table & Cust. Section Data W21x55		PEFF := 95·%	Percent Effective
Variables Set Here	Section Designation	$I_v = 1140 \cdot in^4$	Moment of Inertia About 'X' Axis
shapeName = "W21x55"	Section Designation	$I_X = 1140 \cdot \text{ln}$	Woment of Inertia About A Axis
$beam_{wt} = 55 \cdot plf$	Beam Weight Per Linear Foot	$S_x = 110 \cdot in^3$	Section Modulus About 'X' Axis
$A_{cs} = 16.2 \cdot in^2$	Cross Sectional Area	$r_x = 8.4 \cdot in$	Radius of Gyration About 'X' Axis
$d = 20.8 \cdot in$	Section Depth	$I_y = 48.4 \cdot in^4$	Moment of Inertia About 'Y' Axis
$t_{\rm w} = 0.375 \cdot in$	Web Thickness	$S_y = 11.8 \cdot in^3$	Section Modulus About 'Y' Axis
$b_f = 8.22 \cdot in$	Flange Width	$r_y = 1.73 \cdot in$	Radius of Gyration About 'Y' Axis
$t_f = 0.522 \cdot in$	Flange Thickness	$Z_{x} = 126 \cdot in^{3}$	Plastic Section Modulus about 'X' Axis
NG := 10	Number of Beams	$Z_y = 18.4 \cdot \text{in}^3$	Plastic Section Modulus about 'Y' Axis
$L_b := 1 \cdot ft$	Unbraced Length	E := 29000000·psi	Elastic Modulus

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Dead Load Data:

Concrete Unit Weight: $CONCWT := 150 \cdot pcf$

Timber Unit Weight: $TIMBWT := 50 \cdot pcf$

Deck Unit Weight:

 $DeckWT = 490 \cdot pcf$

Asphalt Wearing Surface Unit Weight: $AWSWT := 144 \cdot pcf$

Rail Weight (All Rails): $RAILWT := 20 \cdot plf$ (distributed to all beams)

Additional Uniform Load on Deck: $AULD := 0 \cdot psf$

(distributed to all beams)

Additional Line Load on Deck: $ALLD := 0 \cdot plf$ (distributed to all beams)

Additional Load on Beam: $ALG := 0 \cdot plf$ (distributed to one beam)

Diaphragm Unit Weight: Pdiaph := $15.3 \cdot plf$ (along diagphragm)

Diaphragm Location (SPAN/XDiaph): XDiaph := 3XD := if(XDiaph = 2, 4, if(XDiaph = 3, 3, 2))

(Number of Diaphragms in Plan View) XD = 3

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Dead Load Data, Cont'd:

Uniform Dead Loads Applied to Beam:

Slab Weight:

$$SLABWT_{Ext} := \left(\frac{S_E}{2} + SO\right) \cdot DeckT \cdot DeckWT$$

 $SLABWT_{Ext} = 30.625 \cdot plf$

 $SLABWT_{Int} := S_{I'}DeckT \cdot DeckWT$

 $SLABWT_{Int} = 45.937 \cdot plf$

Beam Weight:

BEAMWT = $55 \cdot plf$

 $BEAMWT = 55 \cdot plf$

Asphalt Wearing Surface:

 $AWSW1_{Int} := S_{I^{\cdot}}AWS \cdot AWSWT$

 $AWSW1_{Int} = 108 \cdot plf$

$$AWSW1_{Ext} := \left(\frac{S_E}{2} + SO - RAILW - \frac{SIDEW}{2}\right) \cdot AWS \cdot AWSWT \quad AWSW1_{Ext} = 72 \cdot plf$$

 $AWSW2 := \frac{CLRROAD \cdot AWS \cdot AWSWT}{NG}$

 $AWSW2 = 80.1 \cdot plf$

$$AWSW_{I} := max(AWSW1_{Int}, AWSW2)$$

 $AWSW_I = 108 \cdot plf$

$$AWSW_E := max(AWSW1_{Ext}, AWSW2)$$

 $AWSW_E = 80.1 \cdot plf$

Rail Weight:

 $RAILW_1 := \frac{RAILWT}{3}$

 $RAILW_1 = 6.667 \cdot plf$

Sidewalk Weight:

 $SIDEWT := \frac{SIDEW \cdot SIDET \cdot CONCWT}{3}$

 $SIDEWT = 0 \cdot plf$

Additional Uniform Loads:

 $AULDWT := AULD \cdot S_I$

 $AULDWT = 0 \cdot plf$

Additional Line Loads:

 $ALLDWT := \frac{ALLD}{NG}$

 $ALLDWT = 0 \cdot plf$

Additional Girder Loads:

 $ALG = 0 \cdot plf$

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Dead Load Data:

Total Uniform Dead Load:

 $UNIFDL_I := SLABWT_{Int} + BEAMWT + AWSW_I + RAILW_1 + SIDEWT + AULDWT + ALLDWT$

 $UNIFDL_I = 215.6 \cdot plf$

 $UNIFDL_E := SLABWT_{Ext} + BEAMWT + AWSW_E + RAILW_1 + SIDEWT + AULDWT + ALLDWT + ALG$

Interior Beam Moment

 $UNIFDL_E = 172.4 \cdot plf$ $Mdlu_{I} := \frac{UNIFDL_{\Gamma}SPAN^{2}}{8}$ $Mdlu_I = 41688.384 \cdot lbf \cdot ft$

Diaphragm Dead Load Moment:

Uniform Dead Load Moment:

 $Mdld_I := \frac{Pdiaph \cdot S_{I'} SPAN}{XD}$

 $Mdld_I = 601.749 \cdot lbf \cdot ft$

Total Dead Load Moment:

 $Mdl_I := Mdlu_I + Mdld_I$

 $Mdl_{I} = 42290.133 \cdot lbf \cdot ft$

Exterior Beam Moment

Uniform Dead Load Moment:

 $Mdlu_E := \frac{UNIFDL_E \cdot SPAN^2}{8}$

 $Mdlu_E = 33332.982 \cdot lbf \cdot ft$

Diaphragm Dead Load Moment:

 $Mdld_E := \frac{Pdiaph \cdot S_E \cdot SPAN}{XD}$

 $Mdld_E = 601.749 \cdot lbf \cdot ft$

Total Dead Load Moment:

 $Mdl_E := Mdlu_E + Mdld_E$

 $Mdl_E = 33934.731 \cdot lbf \cdot ft$

Live Load Factors:

Impact Factor:

Imax := 1.30

(Ref. 2, Section 3.8)

 $I := 1 + \frac{50}{\frac{\text{SPAN}}{4} + 125}$ I = 1.304 I := if(I > Imax, Imax, I)

I = 1.3

Wheel Load Distribution Factor:

(Ref. 2, Section 3.23, Table 3.23.1)

Steel Deck: Steel Bridge Corrugated Plank (2" Minimum Depth)

DFI = 0.333DFE = "Reaction"

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Live Load Factors Cont'd:

Simple Span Wheel Distribution:

WHEELSP := $6 \cdot \text{ft}$

Distance from Edge of Lane to Wheel (Interior):

$$\begin{aligned} \text{WLC} &:= \text{if} \left(\text{CLRROAD} < 16 \cdot \text{ft}, 2 \cdot \text{ft}, \text{if} \left(\text{CLRROAD} \ge 20 \cdot \text{ft}, 2 \cdot \text{ft}, \frac{\text{CLRROAD} - 2 \cdot \text{WHEELSP}}{4} \right) \right) & \text{WLC} = 2 \cdot \text{ft} \\ \text{X1} &:= \text{S}_{\text{I}} - 2 \cdot \text{WHEELSP} - 2 \cdot \text{WLC} & \text{X1} &:= \text{if} (\text{X1} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X1}) & \text{X1} = 0 \cdot \text{ft} \\ \text{X2} &:= \text{S}_{\text{I}} - \text{WHEELSP} - 2 \cdot \text{WLC} & \text{X2} &:= \text{if} (\text{X2} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X2}) & \text{X2} = 0 \cdot \text{ft} \\ \text{X3} &:= \text{S}_{\text{I}} - \text{WHEELSP} & \text{X3} &:= \text{if} (\text{X3} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X3}) & \text{X3} = 0 \cdot \text{ft} \\ \text{X4} &:= \text{S}_{\text{I}} & \text{X4} = 3 \cdot \text{ft} \\ \text{X5} &:= \text{S}_{\text{I}} - 2 \cdot \text{WLC} & \text{X5} &:= \text{if} (\text{X5} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X5}) & \text{X5} = 0 \cdot \text{ft} \\ \text{X6} &:= \text{S}_{\text{I}} - \text{WHEELSP} - \text{WLC} & \text{X6} &:= \text{if} (\text{X6} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X6}) & \text{X6} = 0 \cdot \text{ft} \\ \text{X7} &:= \text{S}_{\text{I}} - \text{WHEELSP} - 4 \cdot \text{WLC} & \text{X7} &:= \text{if} (\text{X7} \le 0 \cdot \text{ft}, 0 \cdot \text{ft}, \text{X7}) & \text{X7} = 0 \cdot \text{ft} \\ \text{DFS} &:= \frac{\text{X1} + \text{X2} + \text{X3} + \text{X4} + \text{X5} + \text{X6} + \text{X7}}{\text{S}_{\text{I}} \cdot 2} & \text{DFS} = 0.5 \\ \text{DF}_{\text{I}} &:= \text{if} (\text{DFI} = \text{"Reaction"}, \text{DFS}, \text{DFI}) & \text{DF}_{\text{I}} = 0.333 \end{aligned}$$

Distance from Edge of Lane to Wheel (Exterior):

$$\begin{array}{ll} X1 \coloneqq S_E + (SO - RAILW) - \dfrac{SIDEW}{2} - WLC \\ X1 \coloneqq if(X1 \le 0 \cdot ft, 0 \cdot ft, X1) & X1 = 1.5 \cdot ft \\ X2 \coloneqq X1 - WHEELSP & X2 \coloneqq if(X2 \le 0 \cdot ft, 0 \cdot ft, X2) & X2 = 0 \cdot ft \\ DFS \coloneqq \dfrac{X1 + X2}{S_E \cdot 2} & DFS = 0.25 \\ DF_E \coloneqq if(DFE = "Reaction", DFS, DFE) & DF_E = 0.25 \end{array}$$

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Section Capacities:

Compact Section

Compact Section Check:

(Ref. 2, Section 10.42)

(Ref. 2, Section 10.48.1)

Equations From AASHTO Chapter 10

a) Compression Flange Check

$$Compression_{Flange} \coloneqq \frac{b_f}{t_f}$$

CompFlange_{Limit} :=
$$\frac{4110}{\sqrt{F_y \cdot \frac{1}{psi}}}$$
 (10-93)

$$CompFlange_{Ratio} := \frac{Compression_{Flange}}{CompFlange_{Limit}}$$

 $CompFlange_{Check} := if(CompFlange_{Ratio} \le 1, "Good", "No Good")$

$$CompFlange_{Ratio} = 0.727$$

CompFlange_{Check} = "Good"

(10-94)

b) Web Thickness Check

$$Web_{Thickness} := \frac{d - 2t_f}{t_w} \qquad Web_{Limit} := \frac{19230}{\sqrt{F_y \cdot \frac{1}{p_{Si}}}}$$

$$Web_{Ratio} := \frac{Web_{Thickness}}{Web_{Limit}}$$

$$Web_{Check} := if(Web_{Ratio} \le 1, "Good", "No Good")$$

$$Web_{Ratio} = 0.52$$

Flange-Web Interaction:

$$Flange_{Web} := \frac{d - 2t_f}{t_w} + 4.68 \cdot \frac{b_f}{t_f}$$

$$FlangeWeb_{Limit} := \frac{33650}{\sqrt{F_y \cdot \frac{1}{psi}}}$$
(10-95)

$$FlangeWeb_{Ratio} := \frac{Flange_{Web}}{FlangeWeb_{Limit}}$$

$$\begin{aligned} FlangeWeb_{Check} := & & \text{ if } \left(CompFlange_{Ratio} > 0.75 \wedge Web_{Ratio} > 0.75 \right) \\ & & & \text{ "Good" } & \text{ if } FlangeWeb_{Ratio} \leq 1 \\ & & & \text{ "No Good" } & \text{ otherwise} \end{aligned}$$

$$FlangeWeb_{Ratio} = 0.713$$

FlangeWeb_{Check} = "Good"

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

c) Spacing of Lateral bracing for Compression Flange

(Assume M1/Mu = 1.0)

$$Lateral_{Brace} := \frac{L_b}{r_y}$$

LatBrace_{Limit} :=
$$\frac{[3.6 - 2.2 \cdot (1.0)] \cdot 10^{6}}{\left(F_{y} \cdot \frac{1}{\text{psi}}\right)}$$
(10-96)

$$LatBrace_{Ratio} \coloneqq \frac{Lateral_{Brace}}{LatBrace_{Limit}}$$

$$LatBrace_{Ratio} = 0.178$$

$$LatBrace_{Check} := if(LatBrace_{Ratio} \le 1, "Good", "No Good")$$

Compact Section Check Summary:

$$Section_{Check} := \left| \begin{array}{l} \text{if } \left(CompFlange_{Check} = "Good" \land Web_{Check} = "Good" \right) \\ \\ \left| \text{"Compact" } \text{ if } \left(FlangeWeb_{Check} = "Good" \land LatBrace_{Check} = "Good" \right) \\ \\ \left| \text{"NonCompact" } \text{ otherwise} \right| \\ \\ \left| \text{"NonCompact" } \text{ otherwise} \right| \\ \end{array} \right|$$

Section_{Check} = "Compact"

Compact Section Capacity:

$$(10-92)$$

$$Mu_C := F_v \cdot Zx \cdot PEFF$$

$$Mu_C = 359.1 \cdot kip \cdot ft$$

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Section Capacities Cont'd:

Non-Compact Section

Braced Non-Compact Section Check:

(Ref. 2, Section 10.48.2)

$$Mu_{NC1} = Fy \cdot S_{xt}$$
 or $Mu_{NC2} = Fy \cdot S_{xc} \cdot R_b$

a) Compression Flange Check

$$Braced_{CompFlange} := \frac{bf}{tf}$$
 $BracedFlange_{Limit} := 24$ (10-100)

$$BracedFlange_{Ratio} := \frac{Braced_{CompFlange}}{BracedFlange_{Limit}} BracedFlange_{Ratio} = 0.656$$

$$BracedFlange_{Check} := if \Big(BracedFlange_{Ratio} \leq 1 \,, "Good" \,, "No Good" \Big) \\ BracedFlange_{Check} = "Good" \,, "No Good" \Big) \\ BracedFlange_{Check} = "Good" \,, "No Good" \,, "No Good$$

b) Web Thickness Check

$$\operatorname{Braced}_{\operatorname{Web}} \coloneqq \frac{d - 2 \cdot \operatorname{tf}}{t_{\operatorname{w}}} \qquad \operatorname{BracedWeb}_{\operatorname{Limit}} \coloneqq \frac{36500}{\sqrt{F_{\operatorname{y}} \cdot \frac{1}{\operatorname{psi}}}} \tag{10-104}$$

$$BracedWeb_{Ratio} := \frac{Braced_{Web}}{BracedWeb_{Limit}}$$

$$BracedWeb_{Ratio} = 0.274$$

$$BracedWeb_{Check} := if \Big(BracedWeb_{Ratio} \leq 1 \,, "Good" \,, "No \,Good" \, \Big) \\ BracedWeb_{Check} = "Good" \,, "Good" \,, "No \,Good" \, \Big) \\ BracedWeb_{Check} = "Good" \,, "Good" \,, "No \,Good" \, \Big) \\ BracedWeb_{Check} = "Good" \,, "Good" \,, "No \,Good" \,, "No \,Good" \, \Big) \\ BracedWeb_{Check} = "Good" \,, "Good" \,, "No \,Good" \,, "No \,Good" \,, "No \,Good" \, \Big) \\ BracedWeb_{Check} = "Good" \,, "Good" \,, "No \,Good" \,, "Good" \,, "No \,Good" \,, "Good" \,,$$

c) Spacing of Lateral bracing for Compression Flange

$$\operatorname{Braced}_{\operatorname{LatBrace}} \coloneqq \operatorname{L}_{b} \qquad \operatorname{BracedLat}_{\operatorname{Limit}} \coloneqq \frac{20000000 \cdot (\operatorname{bf} \cdot \operatorname{tf})}{\left(\operatorname{F}_{y} \cdot \frac{1}{\operatorname{psi}}\right) \cdot \operatorname{d}} \tag{10-101}$$

$$BracedLat_{Ratio} := \frac{Braced_{LatBrace}}{BracedLat_{Limit}}$$

$$BracedLat_{Ratio} = 0.105$$

$$BracedLat_{Check} \coloneqq if \Big(BracedLat_{Ratio} \le 1 \,, "Good" \,, "No \,Good" \Big) \\ BracedLat_{Check} = "Good" \,, "No \,Good" \Big)$$

Braced Section Check Summary:

Braced_{Check} = "Braced"

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Braced Section Capacity:

$$F_{cr} \coloneqq \text{min} \left[F_y, \left(4400 \cdot \frac{tf}{bf} \right)^2 \cdot \text{psi} \right]$$

$$S_{xt} := \frac{I_x}{0.5 \cdot d} \qquad S_{xc} := S_{xt}$$

$$S_{xc} := S_{xc}$$

$$D_c \coloneqq \frac{d-2{\cdot}tf}{2}$$

$$f_b := F_y$$

$$\lambda := if \left(D_c \le \frac{d-2 \cdot tf}{2}, 15400, 12500\right)$$

$$R_{b_braced} := min \left[1 - .002 \cdot \left(\frac{D_c \cdot t_w}{bf \cdot tf} \right) \cdot \left(\frac{D_c}{t_w} - \frac{\lambda}{\sqrt{f_b \cdot \frac{1}{psi}}} \right), 1 \right]$$

$$Mu_1 := |S_{xt} \cdot F_v|$$

$$Mu_2 := |F_{cr} \cdot S_{xc} \cdot R_{b_braced}|$$

$$Mu_{Braced} := min(Mu_1, Mu_2) \cdot PEFF$$

(10-98, 10-99)

$$F_{cr} = 36000 \cdot psi$$

$$S_{xt} = 109.615 \cdot in^3$$

$$S_{xc} = 109.615 \cdot in^3$$

$$D_c = 9.878 \cdot in$$

$$f_b = 36000 \cdot psi$$

$$\lambda = 15400$$

$$R_{b_braced} = 1$$

$$Mu_1 = 328.8 \cdot kip \cdot ft$$

$$Mu_2 = 328.8 \cdot kip \cdot ft$$

$$Mu_{Braced} = 312.4 \cdot kip \cdot ft$$

10.48.4.1 Partially Braced Members

$$I_{yc} := \frac{tf \cdot bf^3}{12}$$
 $I_{yc} = 24.16 \cdot in^4$ $I_y = 48.4 \cdot in^4$

$$\frac{I_{yc}}{I_{y}} = 0.499 \qquad \qquad \text{if} \Bigg[\Bigg(0.1 < \frac{I_{yc}}{I_{y}} < 0.9 \Bigg), \text{"Good" ,"No Good"} \Bigg] = \text{"Good"}$$

$$r_1 := \sqrt{\frac{I_{yc}}{bf \cdot tf}}$$
 $r_1 = 2.373 \cdot in$

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

$$L_b = 1 \cdot \mathrm{ft} \qquad \qquad L_p := \frac{9500 \cdot r_1}{\sqrt{\frac{F_y}{psi}}} \qquad L_p = 9.901 \; \mathrm{ft}$$

$$L_r := \sqrt{\frac{572 \cdot 10^6 \cdot I_{yc} \cdot d}{F_y \cdot \frac{1}{psi} \cdot S_{xc}}} \qquad L_r = 22.491 \text{ ft}$$

$$J := \frac{\left(b_{f'}t_{f}^{3}\right) + \left(b_{f'}t_{f}^{3}\right) + \left[(d - 2 \cdot tf) \cdot t_{w}^{3}\right]}{3} \qquad J = 1.13 \cdot in^{4}$$

$$C_b := 1.75$$
 (Assumed)

$$My_1 := S_{xc} \cdot F_v$$
 $My_1 = 329 \cdot kip \cdot ft$

$$\frac{D_c}{t_w} = 26.341$$

$$\frac{\lambda}{\sqrt{\frac{F_y}{psi}}} = 81.165$$

$$\begin{split} Mr_{l} := & \left| \pi \cdot E \cdot C_{b} \cdot \left(\frac{I_{yc}}{L_{b}} \right) \cdot \sqrt{\left(0.772 \cdot \frac{J}{I_{yc}} \right) + 9.87 \cdot \left(\frac{d}{L_{b}} \right)^{2}} \right. & \text{if } \frac{D_{c}}{t_{w}} \leq \frac{\lambda}{\sqrt{\frac{F_{y}}{psi}}} \\ \text{if } \frac{\lambda}{\sqrt{\frac{F_{y}}{psi}}} < \frac{D_{c}}{t_{w}} \\ \left| My_{l} \quad \text{if } L_{b} \leq L_{p} \right. & \text{(10-103d)} \\ \left| C_{b} \cdot F_{y} \cdot S_{xc} \cdot \left(1 - 0.5 \cdot \frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right. & \text{if } L_{p} < L_{b} \leq L_{r} \\ \left| C_{b} \cdot \frac{F_{y} \cdot S_{xc}}{2} \cdot \left(\frac{L_{r}}{L_{b}} \right)^{2} \right. & \text{if } L_{r} < L_{b} \end{aligned} \tag{10-103g}$$

$$M_r := min(My_1, Mr_1)$$

$$M_r = 328.8 \cdot kip \cdot ft$$

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

$$A_{fc} := bf \cdot tf$$
 $A_{fc} = 4.291 \cdot in^2$

$$R_{b_Part} := \min \left[1, 1 - .002 \cdot \left(\frac{D_c \cdot t_w}{A_{fc}} \right) \cdot \left(\frac{D_c}{t_w} - \frac{\lambda}{\sqrt{\frac{M_r}{S_{xc}} \cdot \frac{1}{psi}}} \right) \right]$$
 (10-103b)
$$R_{b_Part} = 1$$

$$Mu_{Part_braced} := M_r \cdot R_{b_Part} \cdot PEFF$$
 (10-103a) $Mu_{Part_braced} = 312.4 \cdot kip \cdot f$

Section Capacity

$$\begin{aligned} M_u &:= & & Mu_C & \text{if } Section_{Check} = \text{"Compact"} & & Mu_C = 359.1 \cdot \text{kip} \cdot \text{ft} \\ & & \text{if } Section_{Check} = \text{"NonCompact"} \\ & & & Mu_{Braced} & \text{if } Braced_{Check} = \text{"Braced"} & & Mu_{Braced} = 312.4 \cdot \text{kip} \cdot \text{ft} \\ & & & Mu_{Part_braced} & \text{if } Braced_{Check} = \text{"Partially Braced"} & & Mu_{Part_braced} = 312.4 \cdot \text{kip} \cdot \text{ft} \end{aligned}$$

Live Load Moment Calculations

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Interior Beam Live Load Rating:

(Ref. 1, Section 6.5)

Maximum Strength Rating

Rating Factors:

A1 := 1.3

A2inv := 2.17 A2opr := 1.3

(Ref. 1, Section 6.5.3)

 $Mll_I := Mlane \cdot I \cdot DF_I$

 $C := M_u$

 $D_I := Mdl_I$

 $C = 359.1 \cdot \text{kip} \cdot \text{ft}$

 $D_I = 42.29 \cdot \text{kip} \cdot \text{ft}$

 $RFinv_I := \frac{C \cdot PEFF - A1 \cdot D_I}{A2inv \cdot Mll_I} \qquad RFopr_I := \frac{C \cdot PEFF - A1 \cdot D_I}{A2opr \cdot Mll_I} \qquad RT_{inv} = W \cdot RF_{inv} \qquad RT_{opr} = W \cdot RF_{opr} =$

Vehicle	Weight (W)	M _{lane}	M _{II} (Factored)	RF _{inv}	RF_{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	231.6 kip·ft	100.4 kip∙ft	1.314	2.193	17.738 tons	29.608 tons	SNSH
SNGARBS2	20.0 tons	286.3 kip·ft	124.0 kip·ft	1.063	1.775	21.262 tons	35.491 tons	SNGARBS2
SNAGRIS2	22.0 tons	292.3 kip·ft	126.7 kip·ft	1.041	1.738	22.903 tons	38.230 tons	SNAGRIS2
SNCOTTS3	27.25 tons	461.4 kip·ft	199.9 kip·ft	0.660	1.101	17.973 tons	30.001 tons	SNCOTTS3
SNAGGRS4	34.925 tons	516.5 kip·ft	223.8 kip·ft	0.589	0.984	20.578 tons	34.349 tons	SNAGGRS4
SNS5A	35.55 tons	527.5 kip·ft	228.6 kip·ft	0.577	0.963	20.508 tons	34.232 tons	SNS5A
SNS6A	39.95 tons	556.7 kip·ft	241.2 kip·ft	0.547	0.913	21.840 tons	36.456 tons	SNS6A
SNS7B	42.0 tons	581.7 kip·ft	252.1 kip·ft	0.523	0.873	21.972 tons	36.677 tons	SNS7B
TNAGRIT3	33.0 tons	450.9 kip·ft	195.4 kip∙ft	0.675	1.127	22.271 tons	37.175 tons	TNAGRIT3
TNT4A	33.075 tons	450.9 kip·ft	195.4 kip·ft	0.675	1.127	22.322 tons	37.260 tons	TNT4A
TNAGRIT4	43.0 tons	525.8 kip·ft	227.8 kip·ft	0.579	0.966	24.888 tons	41.543 tons	TNAGRIT4
TNAGT5A	45.0 tons	557.4 kip·ft	241.5 kip·ft	0.546	0.911	24.568 tons	41.010 tons	TNAGT5A
TNAGT5B	45.0 tons	579.3 kip·ft	251.0 kip·ft	0.525	0.877	23.642 tons	39.464 tons	TNAGT5B
TNT6A	41.6 tons	527.5 kip·ft	228.6 kip·ft	0.577	0.963	23.998 tons	40.059 tons	TNT6A
TNT7A	42.0 tons	517.6 kip·ft	224.3 kip·ft	0.588	0.981	24.692 tons	41.216 tons	TNT7A
TNT7B	42.0 tons	507.2 kip∙ft	219.8 kip·ft	0.600	1.002	25.202 tons	42.068 tons	TNT7B
H 20	20	339.3 kip·ft	147.0 kip·ft	0.897	1.497	17.939	29.944	H 20
HS 20	36	437.8 kip∙ft	189.7 kip∙ft	0.695	1.160	25.022	41.767	HS 20

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Interior Beam Live Load Rating:

(Ref. 1, Section 6.5)

Overload Rating

Rating Factors:

 $A1_{O} := 1$ $A2inv_{O} := 1.67$ $A2opr_{O} := 1$

(Ref. 2, Section 10.57)

 $Mll_I = Mlane \cdot I \cdot DF_I$

 $C_O := 0.80 \cdot F_v \cdot S_x$

 $D_{I} = Mdl_{I}$

 $C_O = 264 \cdot \text{kip} \cdot \text{ft}$

 $D_I = 42.29 \cdot \text{kip} \cdot \text{ft}$

$$RFinv_{IO} := \frac{C_{O} \cdot PEFF - A1_{O} \cdot D_{I}}{A2inv_{O} \cdot Mll_{I}} \qquad RFopr_{IO} := \frac{C_{O} \cdot PEFF - A1_{O} \cdot D_{I}}{A2opr_{O} \cdot Mll_{I}} \qquad RT_{invO} = W \cdot RF_{invO} \qquad RT_{oprO} = W \cdot RF_{oprO} = W \cdot RF_{$$

$$RFopr_{IO} := \frac{C_{O} \cdot PEFF - A1_{O} \cdot D}{A2opr_{O} \cdot Mll_{I}}$$

$$RT_{invO} = W \cdot RF_{invO}$$
 $RT_{oprO} = W \cdot RF_{oprO}$

Vehicle	Weight (W)	M _{lane}	M _{II} (Factored)	RF _{inv}	RF _{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	231.6 kip·ft	100.4 kip∙ft	1.244	2.077	16.794 tons	28.045 tons	SNSH
SNGARBS2	20.0 tons	286.3 kip·ft	124.0 kip∙ft	1.007	1.681	20.131 tons	33.618 tons	SNGARBS2
SNAGRIS2	22.0 tons	292.3 kip·ft	126.7 kip·ft	0.986	1.646	21.684 tons	36.212 tons	SNAGRIS2
SNCOTTS3	27.25 tons	461.4 kip·ft	199.9 kip∙ft	0.624	1.043	17.016 tons	28.417 tons	SNCOTTS3
SNAGGRS4	34.925 tons	516.5 kip·ft	223.8 kip·ft	0.558	0.932	19.483 tons	32.536 tons	SNAGGRS4
SNS5A	35.55 tons	527.5 kip·ft	228.6 kip·ft	0.546	0.912	19.416 tons	32.425 tons	SNS5A
SNS6A	39.95 tons	556.7 kip·ft	241.2 kip·ft	0.518	0.864	20.677 tons	34.531 tons	SNS6A
SNS7B	42.0 tons	581.7 kip·ft	252.1 kip·ft	0.495	0.827	20.803 tons	34.741 tons	SNS7B
TNAGRIT3	33.0 tons	450.9 kip·ft	195.4 kip∙ft	0.639	1.067	21.085 tons	35.213 tons	TNAGRIT3
TNT4A	33.075 tons	450.9 kip·ft	195.4 kip∙ft	0.639	1.067	21.134 tons	35.293 tons	TNT4A
TNAGRIT4	43.0 tons	525.8 kip·ft	227.8 kip·ft	0.548	0.915	23.563 tons	39.351 tons	TNAGRIT4
TNAGT5A	45.0 tons	557.4 kip·ft	241.5 kip·ft	0.517	0.863	23.261 tons	38.845 tons	TNAGT5A
TNAGT5B	45.0 tons	579.3 kip·ft	251.0 kip·ft	0.497	0.831	22.384 tons	37.381 tons	TNAGT5B
TNT6A	41.6 tons	527.5 kip·ft	228.6 kip·ft	0.546	0.912	22.721 tons	37.944 tons	TNT6A
TNT7A	42.0 tons	517.6 kip·ft	224.3 kip·ft	0.557	0.930	23.378 tons	39.041 tons	TNT7A
TNT7B	42.0 tons	507.2 kip∙ft	219.8 kip·ft	0.568	0.949	23.861 tons	39.847 tons	TNT7B
H 20	20	339.3 kip·ft	147.0 kip·ft	0.849	1.418	16.984	28.363	H 20
HS 20	36	437.8 kip∙ft	189.7 kip∙ft	0.658	1.099	23.690	39.563	HS 20

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Exterior Beam Live Load Rating:

(Ref. 1, Section 6.5)

Maximum Strength Rating

Rating Factors:

A2inv = 2.17 A2opr = 1.3

(Ref. 1, Section 6.5.3)

 $Mll_E := Mlane \cdot I \cdot DF_E$

A1 = 1.3

 $C = M_{ij}$

 $D_E \coloneqq \, Mdl_E$

 $C = 359.1 \cdot \text{kip} \cdot \text{ft}$

 $D_E = 33.935 \cdot \text{kip} \cdot \text{ft}$

$$RFinv_E \coloneqq \frac{C \cdot PEFF - A1 \cdot D_E}{A2inv \cdot Mll_E}$$

$$RFopr_E := \frac{C \cdot PEFF - A1 \cdot D_E}{A2opr \cdot Mll_E}$$

$$RT_{inv} = W \cdot RF_{inv}$$
 $RT_{opr} = W \cdot RF_{opr}$

$$RT_{opr} = W \cdot RF_{opr}$$

Vehicle	Weight (W)	M _{lane}	M _{II} (Factored)	RF _{inv}	RF _{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	231.6 kip·ft	75.3 kip∙ft	1.818	3.035	24.548 tons	40.976 tons	SNSH
SNGARBS2	20.0 tons	286.3 kip·ft	93.0 kip∙ft	1.471	2.456	29.426 tons	49.118 tons	SNGARBS2
SNAGRIS2	22.0 tons	292.3 kip·ft	95.0 kip∙ft	1.441	2.405	31.696 tons	52.908 tons	SNAGRIS2
SNCOTTS3	27.25 tons	461.4 kip·ft	150.0 kip·ft	0.913	1.524	24.873 tons	41.519 tons	SNCOTTS3
SNAGGRS4	34.925 tons	516.5 kip·ft	167.9 kip·ft	0.815	1.361	28.479 tons	47.537 tons	SNAGGRS4
SNS5A	35.55 tons	527.5 kip·ft	171.5 kip∙ft	0.798	1.333	28.382 tons	47.376 tons	SNS5A
SNS6A	39.95 tons	556.7 kip·ft	180.9 kip∙ft	0.757	1.263	30.225 tons	50.452 tons	SNS6A
SNS7B	42.0 tons	581.7 kip·ft	189.1 kip∙ft	0.724	1.209	30.409 tons	50.759 tons	SNS7B
TNAGRIT3	33.0 tons	450.9 kip·ft	146.6 kip·ft	0.934	1.559	30.821 tons	51.448 tons	TNAGRIT3
TNT4A	33.075 tons	450.9 kip·ft	146.6 kip·ft	0.934	1.559	30.892 tons	51.566 tons	TNT4A
TNAGRIT4	43.0 tons	525.8 kip·ft	170.9 kip·ft	0.801	1.337	34.443 tons	57.494 tons	TNAGRIT4
TNAGT5A	45.0 tons	557.4 kip·ft	181.2 kip∙ft	0.756	1.261	34.001 tons	56.755 tons	TNAGT5A
TNAGT5B	45.0 tons	579.3 kip·ft	188.3 kip∙ft	0.727	1.214	32.719 tons	54.616 tons	TNAGT5B
TNT6A	41.6 tons	527.5 kip·ft	171.4 kip·ft	0.798	1.333	33.212 tons	55.439 tons	TNT6A
TNT7A	42.0 tons	517.6 kip·ft	168.2 kip∙ft	0.814	1.358	34.172 tons	57.041 tons	TNT7A
TNT7B	42.0 tons	507.2 kip∙ft	164.8 kip·ft	0.830	1.386	34.878 tons	58.219 tons	TNT7B
H 20	20	339.3 kip·ft	110.3 kip∙ft	1.241	2.072	24.826	41.441	H 20
HS 20	36	437.8 kip∙ft	142.3 kip·ft	0.962	1.606	34.629	57.804	HS 20

Engineer's Project No.: 2022.026 2022 Bridge Inspection Cycle Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Exterior Beam Live Load Rating:

(Ref. 1, Section 6.5)

Overload Rating

Rating Factors: $A1_O = 1$ $A2inv_O = 1.67$ $A2opr_O = 1$ (Ref. 2, Section 10.57)

 $Mll_E = Mlane \cdot I \cdot DF_E$ $C_O = 0.80 \cdot F_y \cdot S_x$ $D_E = Mdl_E$

 $C_O = 264 \cdot \text{kip} \cdot \text{ft}$ $D_E = 33.935 \cdot \text{kip} \cdot \text{ft}$

 $RFinv_{EO} := \frac{C_{O} \cdot PEFF - A1_{O} \cdot D_{E}}{A2inv_{O} \cdot Mll_{E}} \qquad RFopr_{EO} := \frac{C_{O} \cdot PEFF - A1_{O} \cdot D_{E}}{A2opr_{O} \cdot Mll_{E}} \qquad RT_{invO} = W \cdot RF_{invO} \qquad RT_{oprO} = W \cdot RF_{oprO} = W \cdot RF_{$

Vehicle	Weight (W)	M _{lane}	M _{II} (Factored)	RF _{inv}	RF _{opr}	RT _{inv}	RT _{opr}	Vehicle
SNSH	13.5 tons	231.6 kip·ft	75.3 kip∙ft	1.725	2.881	23.289 tons	38.892 tons	SNSH
SNGARBS2	20.0 tons	286.3 kip·ft	93.0 kip∙ft	1.396	2.331	27.916 tons	46.620 tons	SNGARBS2
SNAGRIS2	22.0 tons	292.3 kip·ft	95.0 kip∙ft	1.367	2.283	30.070 tons	50.217 tons	SNAGRIS2
SNCOTTS3	27.25 tons	461.4 kip·ft	150.0 kip∙ft	0.866	1.446	23.597 tons	39.408 tons	SNCOTTS3
SNAGGRS4	34.925 tons	516.5 kip·ft	167.9 kip∙ft	0.774	1.292	27.018 tons	45.120 tons	SNAGGRS4
SNS5A	35.55 tons	527.5 kip·ft	171.5 kip∙ft	0.757	1.265	26.926 tons	44.966 tons	SNS5A
SNS6A	39.95 tons	556.7 kip·ft	180.9 kip∙ft	0.718	1.199	28.675 tons	47.887 tons	SNS6A
SNS7B	42.0 tons	581.7 kip·ft	189.1 kip∙ft	0.687	1.147	28.849 tons	48.178 tons	SNS7B
TNAGRIT3	33.0 tons	450.9 kip·ft	146.6 kip·ft	0.886	1.480	29.240 tons	48.832 tons	TNAGRIT3
TNT4A	33.075 tons	450.9 kip·ft	146.6 kip·ft	0.886	1.480	29.308 tons	48.944 tons	TNT4A
TNAGRIT4	43.0 tons	525.8 kip·ft	170.9 kip∙ft	0.760	1.269	32.677 tons	54.570 tons	TNAGRIT4
TNAGT5A	45.0 tons	557.4 kip·ft	181.2 kip∙ft	0.717	1.197	32.257 tons	53.869 tons	TNAGT5A
TNAGT5B	45.0 tons	579.3 kip·ft	188.3 kip∙ft	0.690	1.152	31.041 tons	51.838 tons	TNAGT5B
TNT6A	41.6 tons	527.5 kip·ft	171.4 kip·ft	0.757	1.265	31.509 tons	52.620 tons	TNT6A
TNT7A	42.0 tons	517.6 kip·ft	168.2 kip∙ft	0.772	1.289	32.419 tons	54.140 tons	TNT7A
TNT7B	42.0 tons	507.2 kip∙ft	164.8 kip·ft	0.788	1.316	33.089 tons	55.259 tons	TNT7B
H 20	20	339.3 kip·ft	110.3 kip∙ft	1.178	1.967	23.553	39.333	H 20
HS 20	36	437.8 kip·ft	142.3 kip·ft	0.913	1.524	32.853	54.864	HS 20

Engineer's Project No.: 2022.026 2022 Bridge Inspection Cycle Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Beam Summary Sheet

Steel Section: Name = "W21x55" Total Uniform Dead Load (Interior Beam): UNIFDL $_{I}$ = 215.6·plf

Span Length: SPAN = 39.33 ft Total Dead Load Moment (Interior): $Mdl_1 = 42290.1 \cdot lbf \cdot ft$

Girder Spacing: Interior $S_I = 3 \text{ ft}$ Total Uniform Dead Load (Exterior Beam): UNIFDL_E = 172.4 · plf

Exterior $S_E = 3 \text{ ft}$

Deck Thickness: DeckT = $0.375 \cdot in$ Total Dead Load Moment (Exterior): $Mdl_E = 33934.7 \cdot lbf \cdot ft$

Total Sidewalk Width: SIDEW = 0 Distribution Factor: Interior $DF_I = 0.3333$

Sidewalk Thickness: SIDET = 0 Exterior $DF_E = 0.25$

Structural Steel Yield Strength: $F_v = 36000 \cdot psi$ Impact Factor: I = 1.3

Percent Effective: PEFF = 95.% Maximum Section Capacity: $M_u = 359.1 \cdot kip \cdot ft$

Interior Steel Beam

Exterior Steel Beam

Vehicle	M _{lane}	RT _{inv}	RT _{opr}	Vehicle
SNSH	231.6 kip·ft	16.794 tons	28.045 tons	SNSH
SNGARBS2	286.3 kip·ft	20.131 tons	33.618 tons	SNGARBS2
SNAGRIS2	292.3 kip·ft	21.684 tons	36.212 tons	SNAGRIS2
SNCOTTS3	461.4 kip·ft	17.016 tons	28.417 tons	SNCOTTS3
SNAGGRS4	516.5 kip·ft	19.483 tons	32.536 tons	SNAGGRS4
SNS5A	527.5 kip·ft	19.416 tons	32.425 tons	SNS5A
SNS6A	556.7 kip·ft	20.677 tons	34.531 tons	SNS6A
SNS7B	581.7 kip∙ft	20.803 tons	34.741 tons	SNS7B
TNAGRIT3	450.9 kip·ft	21.085 tons	35.213 tons	TNAGRIT3
TNT4A	450.9 kip·ft	21.134 tons	35.293 tons	TNT4A
TNAGRIT4	525.8 kip·ft	23.563 tons	39.351 tons	TNAGRIT4
TNAGT5A	557.4 kip·ft	23.261 tons	38.845 tons	TNAGT5A
TNAGT5B	579.3 kip·ft	22.384 tons	37.381 tons	TNAGT5B
TNT6A	527.5 kip·ft	22.721 tons	37.944 tons	TNT6A
TNT7A	517.6 kip·ft	23.378 tons	39.041 tons	TNT7A
TNT7B	507.2 kip·ft	23.861 tons	39.847 tons	TNT7B
H 20	339.3 kip·ft	16.984	28.363	H 15
HS 20	437.8 kip·ft	23.690	39.563	HS 15

Vehicle	M _{lane}	RT _{inv}	RT _{opr}	Vehi
SNSH	231.6 kip·ft	23.289 tons	38.892 tons	SNS
SNGARBS2	286.3 kip·ft	27.916 tons	46.620 tons	SNGAF
SNAGRIS2	292.3 kip·ft	30.070 tons	50.217 tons	SNAG
SNCOTTS3	461.4 kip·ft	23.597 tons	39.408 tons	SNCOT
SNAGGRS4	516.5 kip·ft	27.018 tons	45.120 tons	SNAGO
SNS5A	527.5 kip·ft	26.926 tons	44.966 tons	SNS
SNS6A	556.7 kip·ft	28.675 tons	47.887 tons	SNS
SNS7B	581.7 kip·ft	28.849 tons	48.178 tons	SNS
TNAGRIT3	450.9 kip·ft	29.240 tons	48.832 tons	TNAG
TNT4A	450.9 kip·ft	29.308 tons	48.944 tons	TNT₄
TNAGRIT4	525.8 kip·ft	32.677 tons	54.570 tons	TNAG
TNAGT5A	557.4 kip·ft	32.257 tons	53.869 tons	TNAG
TNAGT5B	579.3 kip·ft	31.041 tons	51.838 tons	TNAG
TNT6A	527.5 kip·ft	31.509 tons	52.620 tons	TNT
TNT7A	517.6 kip·ft	32.419 tons	54.140 tons	TNT
TNT7B	507.2 kip∙ft	33.089 tons	55.259 tons	TNT
H 20	339.3 kip·ft	23.553	39.333	H 2
HS 20	437.8 kip·ft	32.853	54.864	HS 2

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

Shear Capacity:

$$t_{wr} := 0.1875 \cdot in$$

$$k_v := 5.34$$

$$d_{\text{hole}} := 3 \text{ in}$$

$$A_w := d \cdot t_{wr} - d_{hole} \cdot t_{wr}$$

$$A_{\rm w} = 3.338 \cdot \text{in}^2$$

$$C_{v} := 1.10 \cdot \frac{\left(k_{v} \cdot \frac{E}{F_{y}}\right)^{.5}}{\frac{h}{t_{vol}}}$$

$$C_{v} = 0.736$$

$$V_n := 0.6 \cdot F_y \cdot A_w \cdot C_v$$
 $V_n = 53.071 \cdot kip$

$t_{fr} := 0.25in$

$$b_f = 8.22 \cdot in$$

$$A_f := t_{fr} \cdot b_f$$

$$A_f = 2.055 \cdot in^2$$

$$V_{nf} := 0.6 \cdot A_f \cdot F_y$$

$$V_{nf} = 44.388 \cdot kip$$

$$S_{xf} := 8.25 \text{in} \cdot \frac{\left(0.25 \text{in}^2\right)}{6}$$

$$M_{cf} := F_v \cdot S_{xf}$$

$$M_{cf} = 1.031 \cdot kip \cdot ft$$

Applied Shear:

$$VD := UNIFDL_{\Gamma} \frac{SPAN}{2}$$
 $MD := VD \cdot .25ft$

Applied Moment:

$$Mv_i := .25 \text{ft} \cdot VL_i$$

	6.312	
	8.557	
	9.075	
	12.578	
	14.495	
	13.975	
	15.005	
$Mv_{i} =$	14.848	·kip·ft
i	12.787	KIP II
	13.37	
	16.358	
	15.712	
	12.745	
	13.67	
	15.53	
	9.6	

25.25·kip 34.23kip 36.3kip 50.31kip 57.98kip 55.9kip 60.02kip 59.39kip 51.15kip 53.48kip 65.43kip 62.85kip 50.98kip 54.68kip 62.12kip 38.4kip

Municipality: Concord

Rated By: <u>JJB</u> Date: <u>5/24/2022</u> Checked By: <u>DMS</u> Date: <u>7/14/2022</u>

RFv.:=	V_{n}
Kr_{i} .=	VL.

$$Rvf_i := \frac{V_{nf}}{VL_i}$$

$$Rm_{i} := \frac{M_{cf} - MD}{Mv_{i}}$$

	2.102
	1.55
•	1.462
	1.055
•	0.915
	0.949
	0.884
$RFv_{i} = $	0.894
i	1.038
	0.992
	0.811
	0.844
•	1.041
ļ	0.971
	0.854
-	1.382

$$Rvf_{i} = \begin{bmatrix} 1.758 \\ 1.297 \\ 1.223 \\ 0.882 \\ 0.766 \\ 0.794 \\ 0.747 \\ 0.868 \\ 0.83 \\ 0.678 \\ 0.706 \\ 0.871 \\ 0.812 \\ 0.715 \\ 1.156 \\ \end{bmatrix}$$

	-0.005
	-0.003
	-0.003
	-0.002
	-0.002
Rm _i =	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.002
	-0.003

 $VL_{HS} := 38.4kip$

$$RFiv_{HS} := \frac{V_n - 1.25 \cdot VD}{1.75 \cdot VL_{HS}}$$

$$RFor_{HS} := \frac{V_n - 1.25 \cdot VD}{1.35 \cdot VL_{HS}}$$

$$RTiv_{HS} := RFiv_{HS} \cdot \frac{36ton}{ton}$$

$$RTiv_{HS} = 25.592$$

$$RTor_{HS} := RFor_{HS} \cdot \frac{36ton}{ton}$$

$$RTor_{HS} = 33.175$$

Municipality: Concord
Rated By: JJB Date: 5/24/2022
Checked By: DMS Date: 7/14/2022

Municipality: Concord
Rated By: JJB Date: 5/24/2022
Checked By: DMS Date: 7/14/2022

Municipality: Concord
Rated By: JJB Date: 5/24/2022
Checked By: DMS Date: 7/14/2022

cle H RBS2 RIS2 TTS3 RS4 5A 6**A** 7B RIT3 1A

RIT4 T5A T5B 3A 7**A** 7B 0 20

ALPHA & OMEGA GROUP

	Reference
BRIDGE 120320	
END BENT 1	
	BEAM 8
2,"	
-	
16 -1	
PER 2022 BRIDGE INSPECTION REPORT	(0/20/2022:
TELL LULL DIKINGE INSPECTION REPORT	DATES 6/20/2022
AT END BENT , CORROSION WITH S	SECTION LOSE BATTON
FLANGE (0.40" AVERAGE REMAINING	
(3/10" AVERAGE REMAINING & LI' X L'	
HOLE (16" x 3")	
SHEAR AT END BENT I MUST F	BE RESISTED BY THE
BOTTOM FLANGE	
BOTTOM FLANGE WIDTH = 8.25"	
AVERAGE REMAINING THICKNESS = 0.40	0"
MOMENT CAPACITY OF BOTTOM FLANGE	CEND BENT 1:
Mc = (8.25")(0.5") * 3(0125) =	12 276 1 52
	14.315 K.IN = 1.0512.FT
(0	

Structure Number: <u>120320</u> Inspection Date: <u>06/28/2022</u>

Spa	n 1	Beam 5						
Plat	e Girder							
	ment nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	37	0	3	Feet
515	Steel Pro	otective Coating	520	480	0	0	40	Square Feet
Elemen	Defect Type	Defect Descr	iption		cs	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION RE CORROSION WITH SECTION LOS (AVERAGE 1/4" REMAINING FOR AVERAGE REMAINING FOR NEXT WEB (3/16" AVERAGE REMAINING	S: BOTTOM FLAI 1.5' LONG, THEN 「1.5' LONG'); LO\	NGE 0.40" WER	4	3	;	3 Feet
107	Corrosion	along the length of the beam, both web, areas of rust scale (no meas			2	37		Feet
107	Corrosion	(combined with other notes 2020) 40 CORROSION THROUGHOUT FULL FACES OF WEB AND EDGES OF F LOCATIONS	LENGTH OF BO	TH	1			Feet
	Effectiveness (Steel	SCATTERED PROTECTIVE COAT	INC EALL LIDE		4	40		8 Square Feet

Span 1		Beam 6	Beam 6					
Plat	e Girder							
	ment nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	37	0	3	Feet
515	Steel Pro	tective Coating	520	480	0	0	40	Square Feet
Elemen Numbe	Defeat Type	Type Defect Description CS CS Qty Qty						
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, 4 3 3 Feet CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.35" AVERAGE REMAINING X 3'); LOWER WEB (3/16" AVERAGE REMAINING X 3' X UP TO 4") WITH RUST HOLE (12" X 1.5")				3 Feet		
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	37		Feet
107	Corrosion	(combined with other notes 2020) 40' OF AREAS OF SURFACE 1 Feet CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS				Feet		
515	Effectiveness (Steel Protective Coatings)	· ·				8 Square Feet		
-	General Comments							

Span 1		Beam 7						
Plate Gi	rder							
Element Number	Element N	lame	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Open Girder/Bean	n	40	0	35	0	5	Feet
515	Steel Protective Coating	I	520	480	0	0	40	Square Feet
lement lumber	Defect Type	Defect Description			cs	CS Qty	Maint Qty	

Structure	Number: <u>120320</u>			Insped	ction Date: <u>06/28/2022</u>
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 4.5' X UP TO 4" WITH 1" DIAMETER CORROSION HOLE AT 1' OUT).	4	5	5 Feet
107	Corrosion	along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	2	35	Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATING FAILURE	4	40	8 Square Feet
	General Comments				

	n 1	Beam	0					
Plate	e Girder							
Num		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	36	0	4	Feet
515	5 Steel Protective Coating		520	480	0	0	40	Square Feet
Element Number	Defect Type	ect Type Defect Description CS				CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, 4 CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (3/16" AVERAGE REMAINING X 4' X UP TO 4") WITH RUST HOLE (16" X 3").				4		4 Feet
		along the length of the beam, both flanges and lower 2" of 2 36 Feet web, areas of rust scale (no measurable loss) at random						
107	Corrosion	along the length of the bea			2	36		Feet
107 107	Corrosion Corrosion	along the length of the bea	o measurable loss) at ra 2020) 40' OF AREAS OF S UT FULL LENGTH OF BO	ndom SURFACE TH	2	36		Feet Feet

Span 1		Beam 9						
Plat	e Girder							
	ment nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	38	0	2	Feet
515	Steel Pro	tective Coating	520	480	0	0	40	Square Feet
Elemen Numbe	Dofoct Type	ect Type Defect Description			cs	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, 4 2 2 Feet CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 2'); LOWER WEB (1/4" AVERAGE REMAINING X 20" X 2.5")				2 Feet		
107	Corrosion	along the length of the beam, both web, areas of rust scale (no measure	•		2	38		Feet
107	Corrosion	(combined with other notes 2020) 40' OF AREAS OF SURFACE 2 Feet CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS				Feet		
515	Effectiveness (Steel Protective Coatings)					3 Square Feet		
General Comments								

Structure: 120320 County: CABARRUS Date: 06/28/2022 Condition Photos

Span 1 Beam 8: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (3/16" AVERAGE REMAINING X 4' X UP TO 4") WITH RUST HOLE (16" X 3").

STRUCTURE NUMBER: 120320

ATTENTION: CITY OF CONCORD; MUNICIPAL PROMPT ACTION REQUEST; CHANGE IN STRUCTURE DATA

FHWA STRUCTURE NO: 000000000250320

Structure Safety Report

Municipal Routine Element Inspection - Contract

SAP STRUCTURE NO: 0130320

DIVISION: 10	COUNTY: CABARRU	JS	INSPECTION DATE	 : 06/28/2022	FREG	QUENCY: 24 MONT	 THS
-	: LINCOLN STREET				— MILE POST:		
LOCATION: 0.4MI.N						-	
FEATURE INTERSE	CTED: IRISH BUFFAL	O CREEK					
LATITUDE: 35° 23	' 23.9"	LONG	ITUDE: 80° 34' 51.	9"			
SUPERSTRUCTURE	STEEL PLANK DE	CK ON SALVAG	ED I-BEAMS				
SUBSTRUCTURE: E	END & INTERIOR BEI	ITS: STEEL CAP	S ON STEEL PILES	S, CONCRETE	ENCASED		
SPANS: 3 SPAN	S. SEE SPAN PROFIL	E SHEET FOR S	PAN DETAILS				
☐FRACTURE CR	ITICAL TEMPO	RARY SHORING	S □SCOUR CR	ITICAL	SCOUR	PLAN OF ACTION	
GRADES: (Inspecto	r/NBI Coding) DECK 6	/6 SUPERST	RUCTURE 5/5	SUBSTRUC	TURE 5/5	CULVERT N/I	N
POSTED SV: 25			POSTED T	TST: 30			
OTHER SIGNS PRE	SENT: (6) DELINEAT	ORS; (1) ADV W	EIGHT POSTING				
		rangir. Kaba			Sign notice		Number Required
					NO	WEIGHT LIMIT	0
					NO	DELINEATORS	0
		Trest			NO	NARROW BRIDGE	0
		NAME OF			NO	ONE LANE BRIDGE	0
					NO	LOW CLEARANCE	0
				2 Yang A			
		1				CTION OF S-N	
						ECTION IES PLANS	
SOUTH APPROAG	CH LOOKING NORTH						
INSPECTED BY	N	SIGNATURE	EIPA		ASSISTED BY	KEITH PROCTOR	

IDENTIFICATION				
(1) STATE NAME NORTH CAROLINA BRIDGE	120320	SUFFICIENCY RATING		65.25
• •	0250320	STATUS =		
	0000000	CLA	SSIFICATION	CODE
(2) STATE HIGHWAY DEPARTMENT DISTRICT	10	(112) NBIS BRIDGE SYSTEM		`
(3) COUNTY CODE (FEDERAL) 25 (4) PLACE CODE (6) FEATURE INTERSECTED IRISH BUFFALO CREEK	14100	(104) HIGHWAY SYSTEM	Inventory Route not on NHS	
(7) FACILITY CARRIED LINCOLN STREET		(26) FUNCTIONAL CLASS	Urban Local	1
(9) LOCATION 0.4MI.N.JCT.WILSHIRE AVE		(100) STRAHNET HIGHWAY	Not a STRAHNET Route	
(11) MILEPOINT	0.0	(101) PARALLEL STRUCTURE	No parallel structure exists	1
(12) BASE HIGHWAY NETWORK	0	(102) DIRECTION OF TRAFFIC	2-way traffic	
(13) LRS INVENTORY ROUTE & SUBROUTE (16) LATITUDE 35° 23' 23.9" (17) LONGITUDE 80°	0 34' 51.9"	(103) TEMPORARY STRUCTURE		
(98) BORDER BRIDGE STATE CODE PERCENT SHARED	J4 J1.9	(110) DESIGNATED NATIONAL NETW	VORK - on national network for trucks	
(99) BORDER BRIDGE STRUCTURE NUMBER		(20) TOLL	On Free Road	
		(21) MAINT -		0
STRUCTURE TYPE AND MATERIAL	Steel	,		0
(43) STRUCTURE TYPE MAIN TYPE Stringer/Multi-beam or girder CODE	302	(22) OWNER -		
(44) STRUCTURE TYPE APPROACH	302	(37) HISTORICAL SIGNIFICANCE -		
TYPE CODE	0	(58) DECK	CONDITION	CODE
	0	,		
(45) NUMBER OF SPANS IN MAIN UNIT	3	(59) SUPERSTRUCTURE		
(46) NUMBER OF SPANS IN APPROACH	0	(60) SUBSTRUCTURE		
(107) DECK STRUCTURE TYPE CODE	6	(61) CHANNEL & CHANNEL PROTEC	TION	
(108)WEARING SURFACE/PROTECTIVE SYSTEM		(62) CULVERTS		1
(A) TYPE OF WEARING SURFACE CODE	6		NG AND POSTING	CODE
(B) TYPE OF MEMBRANE CODE	0	(31) DESIGN LOAD	HS20	
(C) TYPE OF DECK PROTECTION CODE	0	(63) OPERATING RATING METHOD -		
AGE AND SERVICE -		(64) OPERATING RATING -	HS-22	3:
(27) YEAR BUILT	1971	(65) INVENTORY RATING METHOD -		
(106) YEAR RECONSTRUCTED	0	(66) INVENTORY RATING	HS-13	2:
(42) TYPE OF SERVICE ON -	Highway	(70) BRIDGE POSTING	Posting Required	;
OFF - Waterway CODE	15	(41) STRUCTURE OPEN, POSTED, O	R CLOSED	1
(28) LANES ON STRUCTURE 2 LANES UNDER STRUCTURE	0	DESCRIPTION	Posted for Load	
(29) AVERAGE DAILY TRAFFIC	1900	A	PPRAISAL	CODE
(30) YEAR OF ADT 2012 (109) TRUCK ADT PCT	7	(67) STRUCTURAL EVALUATION		
(19) BYPASS OR DETOUR LENGTH	1.0	(68) DECK GEOMETRY		1
GEOMETRIC DATA		(69) UNDERCLEARANCES, VERT & H	HORIZ	1
(48) LENGTH OF MAXIMUM SPAN	39.0	(71) WATERWAY ADEQUACY		
(49) STRUCTURE LENGTH (50) CURB OR SIDEWALK: LEFT 4.8 RIGHT	121.0 0.0	(72) APPROACH ROADWAY ALIGNMI	ENT	
(51) BRIDGE ROADWAY WIDTH, CURB TO CURB	28.0	(36) TRAFFIC SAFETY FEATURES		000
(52) DECK WIDTH OUT TO OUT	28.0	(113) SCOUR CRITICAL BRIDGES		
(32) APPROACH ROADWAY WITH (W/ SHOULDERS)	25.0	PROPOSEI	D IMPROVEMENTS	
(33) BRIDGE MEDIAN No median CODE	0	(75) TYPE OF WORK	COL	ÞΕ
(34) SKEW 30 (35) STRUCTURE FLARED	0 999.9	(76) LENGTH OF STRUCTURE IMPRO	OVEMENT	
(10) INVENTORY ROUTE MIN VERT CLEAR (47) INVENTORY ROUTE TOTAL HORIZ CLEAR	28.0	(94) BRIDGE IMPROVEMENT COST		
(53) MIN VERT CLEAR OVER BRIDGE RDWY	999.9	(95) ROADWAY IMPROVEMENT COS	эт	
(54) MIN VERT UNDERCLEAR: REFERENCE N	0.0	(96) TOTAL PROJECT COST		
(55) MIN LAT UNDERCLEARANCE RT: REFERENCE N	0.0	(97) YEAR OF IMPROVEMENT COST	ESTIMATE	
(56) MIN LAT UNDERCLEARANCE LT:	0.0	(114) FUTURE ADT 3,80		204
NAVIGATION DATA			ISPECTION	
(38) NAVIGATION CONTROL - CODE	0	(90) INSPECTION DATE	(91) FREQUENCY	
(111) PIER PROTECTION CODE		(92) CRITICAL FEATURE INSPECTION		ΙĖ
(39) NAVIGATION VERTICAL CLEARANCE	0.0	A) FRACTURE CRIT DETAIL	A)	
(116) VERT - LIFT BRIDGE NAV MIN VERT CLEAR	0.0	B) UNDERWATER INSP	В)	
(40) NAVIGATION HORIZONTAL CLEARANCE	0.0	C) OTHER SPECIAL INSP	C)	
		SCOUR		

Structure Element Scoring

Structure Number: 120320 Inspection Date 6/28/2022

Element Number	Parent Number	Element Name	Location	Total Quantity	Level 1 Quantity	Level 2 Quantity	Level 3 Quantity	Level 4 Quantity
30	0	Steel Deck Corrugated/Orthotropic/Etc.	Deck	3360	2250	1110	0	0
515	30	Steel Protective Coating	Deck	3360	2250	0	0	1110
107	0	Steel Open Girder/Beam	Beam	1200	146	981	4	69
515	107	Steel Protective Coating	Beam	15600	14546	0	0	1054
215	0	Reinforced Concrete Abutment	Abutments	121	82	7	29	3
220	0	Reinforced Concrete Pile Cap/Footing	Footing	76	73	0	3	0
225	0	Steel Pile	Piles and Columns	12	0	12	0	0
515	225	Steel Protective Coating	Piles and Columns	924	888	0	0	36
231	0	Steel Pier Cap	Caps	136	42	34	0	60
515	231	Steel Protective Coating	Caps	640	280	0	0	360
234	0	Reinforced Concrete Pier Cap	Caps	96	90	0	5	1
330	0	Metal Bridge Railing	Bridge Rail	240	233	6	1	0
515	330	Steel Protective Coating	Bridge Rail	540	540	0	0	0
510	0	Wearing Surface	Wearing Surfaces	3388	0	685	2703	0

Summary of Maintenance Needs

Maintenance By Defect

Structure Number: 120320 Inspection Date: 06/28/2022

MMS Code	Element Name	Defect Name	Recommended Quantity
3314	Steel Open Girder/Beam	Corrosion	73 Feet
3350	Reinforced Concrete Abutment	Delamination/Spall	14 Feet
3350	Reinforced Concrete Abutment	Cracking (RC and Other)	23 Feet
3350	Reinforced Concrete Abutment	Efflorescence/Rust Staining	2 Feet
3348	Reinforced Concrete Pile Cap/Footing	Delamination/Spall	3 Feet
3354	Steel Pier Cap	Corrosion	60 Feet
3348	Reinforced Concrete Pier Cap	Delamination/Spall	3 Feet
3348	Reinforced Concrete Pier Cap	Cracking (RC and Other)	3 Feet
3322	Metal Bridge Railing	Connection	1 Feet
2816	Wearing Surface	Crack (Wearing Surface)	3354 Square Feet
2816	Wearing Surface	Patched Area/Pothole (Wearing Surface)	16 Square Feet
3342	Steel Protective Coating	Effectiveness (Steel Protective Coatings)	274 Square Feet
3342	Steel Protective Coating	Effectiveness (Steel Protective Coatings)	321 Square Feet

Element Structure Maintenance Quantities

Structure Number: 120320 Inspection Date 06/28/2022

Location	MMS Code	Description	Maint Quantity	Total Quantity	Severe Quantity	Poor Quantity	Fair Quantity	Good Quantity
Abutments	3350	Maintenance of Concrete Wings and Wall	39	121	3	29	7	82
Beam	3314	Maintenance Steel Superstructure Components	73	1200	69	4	981	146
Beam	3342	Clean and Paint Steel	210	15600	1054	О	О	14546
Bridge Rail	3322	Maintenance of Steel Bridge Rail	1	240	О	1	6	233
Bridge Rail	3342	Clean and Paint Steel	0	540	0	0	0	540
Caps	3342	Clean and Paint Steel	262	640	360	0	О	280
Caps	3348	Maintenance of Concrete Substructure	6	96	1	5	О	90
Caps	3354	Maintenance of Steel Substructure Components	60	136	60	0	34	42
Deck	3328	Maintenance of Steel Plank Bridge Floor	0	3360	О	0	1110	2250
Deck	3342	Clean and Paint Steel	111	3360	1110	0	О	2250
Footing	3348	Maintenance of Concrete Substructure	3	76	О	3	О	73
Piles and Columns	3342	Clean and Paint Steel	12	924	36	О	О	888
Piles and Columns	3354	Maintenance of Steel Substructure Components	0	12	0	0	12	0
Wearing Surfaces	2816	Asphalt Surface Repair	3370	3388	0	2703	685	0

an1			
3314	Beam 1	Plate Girder	
Priority			
Level	Defect Type	Quantity	Defect Description
?	Corrosion	3	Span 1 Beam 1: [MUNICIPAL PROMPT ACTION REQUEST] at end bent 1, east face, corrosion with section loss: bottom flange (0.47" average remaining x 15"); lower web (1/4" average remaining x 27" x 2")
3314	Beam 2	Plate Girder	
Priority			
Level	Defect Type	Quantity	Defect Description
3	Corrosion	4	Span 1 Beam 2: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BRT OTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (1/4" AVERAGE REMAINING X 4' X UP TO 4") LEFT BOTTOM FLANGE CORROSION [AVERAGE 1/4" REMAINING] WITH KNI EDGING FOR 3' LONG.
3314	Beam 3	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	4	Span 1 Beam 3: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (1/4" REMAINING FOF 1.5' LONG, THEN 0.45" AVERAGE REMAINING FOR NEXT 2' LONG); LOWER WEB (1/4" AVERAGE REMAINING X 4' X 3")
3314	Beam 4	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	2	Span 1 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] at bent 1, top flange
3	Corrosion	5	corrosion with section loss (0.38" average remaining x 2") Span 1 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: LEFT BOTTOM FLANGE (0.47" AVERAGE REMAINING X 50"), RIGHT BOTTOM FLANGE (1/4" AVERAGE REMAINING FO 1.5' LONG, THEN 0.47" AVERAGE REMAINING FOR NEXT 2.5' LONG); LOWER WEB (1/4" AVERAGE REMAINING X 4' X UP TO 4")
3314	Beam 5	Plate Girder	
Priority			
Level	Defect Type	Quantity	Defect Description
7	Corrosion	3	Span 1 Beam 5: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (AVERAGE 1/4" REMAINING FOR 1.5' LONG, THEN 0.40" AVERAGE REMAINING FOR NEXT 1 LONG'); LOWER WEB (3/16" AVERAGE REMAINING X 2.5' X UP TO 3.5")
3314	Beam 6	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	3	Span 1 Beam 6: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.35" AVERAGE

Structure Number 120320

WITH RUST HOLE (12" X 1.5")

3314	Beam 7	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
1	Corrosion	5	Span 1 Beam 7: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 4.5' X UP TO 4" WITH 1" DIAMETER CORROSION HOLE AT 1' OUT).
3314	Beam 8	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
7	Corrosion	4	Span 1 Beam 8: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (3/16" AVERAGE REMAINING X 4' X UP TO 4") WITH RUST HOLE (16" X 3").
3314	Beam 9	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
7	Corrosion	2	Span 1 Beam 9: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 2'); LOWER WEB (1/4" AVERAGE REMAINING X 20" X 2.5")
3314	Beam 10	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
7	Corrosion	5	Span 1 Beam 10: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, WEST FACE, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.37" AVERAGE REMAINING X 2.5'); LOWER WEB (5/16" AVERAGE REMAINING X 3' X UP TO 4"); TOP FLANGE (0.38" AVERAGE REMAINING X 5')
3322	Left Bridge Rail	Steel Rail	
Priority Level	Defect Type	Quantity	Defect Description
7	Connection	1	Span 1 Left Bridge Rail: [MUNICIPAL PROMPT ACTION REQUEST] AT FIFTH POST CONNECTION TO BEAM 1, (1) MISSING CONNECTION BOLT
Span3			
3314	Beam 3	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
7	Corrosion	5	Span 3 Beam 3: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.38" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 5' X UP TO 3")

2 Assigned Priority Maintenance 3 Assigned Critical Find

? Priority Action Request (PAR) 1 Assigned Routine Maintenance

3314	Beam 4	Plate Girder	
Priority	200		
Level	Defect Type	Quantity	Defect Description
?	Corrosion	4	Span 3 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 3.5'); LOWER WEB (1/4" AVERAGE REMAINING X 3.5' X UP TO 4").
3314	Beam 5	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	4	Span 3 Beam 5: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (3/8" AVERAGE REMAINING X 3'); LOWER WEB (3/16" AVERAGE REMAINING X 3.5' X UP TO 3
3314	Beam 6	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	6	Span 3 Beam 6: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.35" AVERAGE
3314	Beam 7	Plate Girder	REMAINING X 6'); LOWER WEB (3/16" AVERAGE REMAINING X 6' X UP TO 4"
Priority			
Level	Defect Type	Quantity	Defect Description
7	Corrosion	6	Span 3 Beam 7: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.42" AVERAGE REMAINING X UP TO 5.5'); LOWER WEB (3/16" AVERAGE REMAINING X 5.5') UP TO 4")
3314	Beam 8	Plate Girder	
Priority Level	Defect Type	Quantity	Defect Description
7	Corrosion	4	Span 3 Beam 8: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.375" AVERAGE REMAINING X UP TO 4'); LOWER WEB (1/8" AVERAGE REMAINING X 3" X UP TO 6" LONG WITH PERFORATIONS, THEN 3/16" REMAINING IN LOWER 3" OF THE WEB FOR THE NEXT 3.5' LONG)
ent 1			
3354	Cap 1	Steel Pier Cap	
Priority	·	·	
Level	Defect Type	Quantity	Defect Description
?	Corrosion	4	Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face below bay a corrosion with section loss: bottom flange (1/4" average remaining x 39"); lower we (7/16" average remaining x 39" x 2"); web stiffeners (as little as 3/16" average remaining x 5" x 2.5")

Structure Nun	nber 120320		
7	Corrosion	3	Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face below beam 2, corrosion with section loss: bottom flange (0.35" average remaining x 2') top flange (0.42" average remaining x 1'); lower web (7/16" average remaining 2.5' x 2"); web stiffener (3/16" average remaining x 5" x 2")
?	Corrosion	9	Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south and north faces below bays 7 through 9, corrosion with section loss: bottom flange (5/16" average remaining x 8.5'); lower web (7/16" average remaining x 8' x 2"); web stiffeners (as little as 0.15" average remaining x 5" x up to 5")
3350	Abutment	Reinforced Cor	ncrete Abutment
Priority Level	Defect Type	Quantity	Defect Description
7	Delamination/Spall	5	End Bent 1 Abutment: [MUNICIPAL PROMPT ACTION REQUEST] SOUTHEAST WINGWALL ADJACENT TO CURB, SPALL (2.5' X 1.5' X 3" DEEP) WITH EXPOSED RUSTED REBAR. THE CONCRETE SHOWS SIGNS OF ALKALAI SILICA REACTION.
3354	Steel Cap	Steel Pier Cap	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	6	End Bent 1 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] NORTH FACE IN THE LOWER 3" OF WEB STIFFENERS 4-9, CORROSION WITH 100% SECTION LOSS.
?	Corrosion	2	End Bent 1 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] NORTH TOP FLANGE EAST OF BEAM 7, CORROSION WITH SECTION LOSS (0.28" AVERAGE REMAINING X 18" X 5")
?	Corrosion	2	End Bent 1 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] NORTH TOP FLANGE EAST OF BEAM 8, CORROSION WITH SECTION LOSS (0.28" AVERAGE REMAINING X 1.5' X 4")
7	Corrosion	1	End Bent 1 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] NORTH FACE IN THE THIRD WEB STIFFENER, LOWER 3", CORROSION WITH SECTION LOSS [AVERAGE 1/8" REMAINING].
Bent 2			
3354	Cap 1	Steel Pier Cap	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	5	Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below beam 3, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 5'); lower web (0.43" average remaining x 3' x 2.5")
?	Corrosion	9	Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below bays 4 through 6, corrosion with section loss: bottom flange (0.33" average remaining x 5.5" x 9'); lower web (less than 1/16" loss x 9' x 2"); web stiffeners in the lower 2", average 3/16" remains.
•	Corrosion	4	Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below bay 7, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 3.5'); top flange (0.35" average remaining x 5.5" x 3.5'); lower web (less than 1/16" loss x 3.5' x 2"); web stiffeners (less than 1/16" loss x 5" x 2")
3348	Concrete Cap	Reinforced Cor	ocrete Pier Cap
Priority Level	Defect Type	Quantity	Defect Description

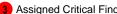
Structure Number 120320

Cracking (RC and

End Bent 2 Concrete Cap: [MUNICIPAL PROMPT ACTION REQUEST] west end of concrete cap, fracture (1' long x full width) undermining steel cap (1' long x 2" high x

3354	Steel Cap	Steel Pier Cap	
Priority Level	Defect Type	Quantity	Defect Description
?	Corrosion	1	End Bent 2 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] south face, web stiffener below beam 9, corrosion with section loss (0.20" average remaining x 4" x 5")
7	Corrosion	2	End Bent 2 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap below beam 8, corrosion with section loss: top flange (0.29" average remaining x 18" x 5"); upper web (7/16" average remaining x 6" x 2.5"); web stiffener (0.25" average remaining x 5" x 1")
3	Corrosion	6	End Bent 2 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap in bays 3 and 4, corrosion with section loss: top flange (3/16" average remaining x 5.5' x 5"); lower web (7/16" average remaining x 4' x up to 2.5"); bottom flange (7/16" average remaining x 4.5'); web stiffeners (as little as 0.22" average remaining x 5" x up to full height)
•	Corrosion	6	End Bent 2 Steel Cap: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap between bays 5 and 6, corrosion with section loss: top flange (1/4" average remaining x 5.5' x 5"); lower web (7/16" average remaining x 6' x up to full height) bottom flange (7/16" average remaining x 5'); web stiffeners (as little as 0.22" average remaining x 5" x full height)

Slope Protection


3352 Slope Slope Protection Protection

Priority Level	Defect Type	Quantity	Defect Description
?		160	[MUNICIPAL PROMPT ACTION REQUEST] AT ABUTMENT 1 IN THE TOP OF THE SLOPE, RIGHT & LEFT SIDES, SCATTERED EROSION [APPROXIMATELY 160 SQUARE FEET TOTAL X UP TO 1.25' DEEP]
7		400	[MUNICIPAL PROMPT ACTION REQUEST] NORTHEAST CORNER IN THE FILL SLOPE, EROSION IS PRESENT, REACHING AS CLOSE AS 4' FROM THE EDGE OF PAVEMENT [APPROXIMATELY 40' LONG X UP TO 10' WIDE X UP TO 10' HIGH]

Element Condition and Maintenance Data

Structure Number: 120320 Inspection Date: 06/28/2022

Otractare	14d11bc1. <u>120320</u>					1114	spection L	batc. <u>00/20/2022</u>
Spa	ın 1	Deck						
Stee	el Deck Corrugated	b						
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
30	Steel De	ck Corrugated/Orthotropic/Etc.	1,120	760	360	0	0 8	Square Feet
515	Steel Pro	otective Coating	1,120	760	0	0	360 \$	Square Feet
Elemen Numbe	Dofoct Typo	Defect Descrip	tion		CS	CS Qty	Maint Qty	
30	O Corrosion underside of deck adjacent to seems and of surface rust/ rust scale (no measurable efflorescence				2	360		Square Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATIN	IG FAILURE		4	360	36	Square Feet

٩n	ts
	n

Spa	n 1	Beam 1						
Plat	e Girder							
	ment nber Stee	Element Name Steel Open Girder/Beam		CS1 Qty 0	CS2 Qty 37	CS3 Qty 0	CS4 Qty 3	
515	Stee	I Protective Coating	520	480	0	0	40	Square Feet
Elemen Numbe	Dofoct Typo	Defect Descr	iption		CS	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] at end bent 1, east face, corrosion with section loss: bottom flange (0.47" average remaining x 15"); lower web (1/4" average remaining x 27" x 2")			4	3		3 Feet
107	Corrosion	along the length of the beam, both web, areas of rust scale (no meas			2	37		Feet
107	Corrosion	(combined with other notes 2020) 40' OF AREAS OF SURFAC CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS			1			Feet
515	Effectiveness (Sto Protective Coatin		ING FAILURE		4	40		8 Square Feet
-	General Comments	3			<u> </u>			

Span	1		Į.	Beam 2							
Plate	Girder										
Elem Numb 107 515		Ele Steel Open Gird Steel Protective			Total Qty 40 520	CS1 Qty 0 480	CS2 Qty 36	CS3 Qty 0		Feet Square Feet	
Element Number 107	Defect Corrosion	[MUN CORF (0.40" AVER FLAN	ROSION WITH AVERAGE RE AGE REMAIN	Defect Description PT ACTION REQUES' SECTION LOSS: BRT EMAINING X 4'); LOW ING X 4' X UP TO 4") ON [AVERAGE 1/4" R R 3' LONG.	OTTOM FL ER WEB (1/ ; LEFT BO	ANGE (4" FTOM	CS 4	CS Qty 4	Maint Qty	4 Feet	
107	Corrosion	along	the length of	the beam, both flange scale (no measurable			2	36		Feet	

Structure Number: 120320 Inspection Date: 06/28/2022

107 Corrosion (combined with other notes 2020) 40' OF AREAS OF SURFACE 1 Feet

CORROSION THROUGHOUT FULL LENGTH OF BOTH
FACES OF WEB AND EDGES OF FLANGES IN VARIOUS
LOCATIONS

515 Effectiveness (Steel SCATTERED PROTECTIVE COATING FAILURE 4 40 8 Square Feet

General Comments

Protective Coatings)

Spar	n 1	Beam 3						
Plate	e Girder							
Elem Num 107	ber	Element Name Steel Open Girder/Beam		CS1 Qty 0	CS2 Qty 36	CS3 Qty 0	CS4 Qty	Feet
515	·	otective Coating	40 520	480	0	0	-	Square Feet
 Element Number	Dofoot Typo	Defect Des	cription		CS	CS Qty	Maint Qty	
107	Corrosion	CORROSION WITH SECTION LO (1/4" REMAINING FOR 1.5' LON	MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, ORROSION WITH SECTION LOSS: BOTTOM FLANGE 1/4" REMAINING FOR 1.5' LONG, THEN 0.45" AVERAGE EMAINING FOR NEXT 2' LONG); LOWER WEB (1/4" VERAGE REMAINING X 4' X 3")			4	2	l Feet
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	36		Feet
107	Corrosion	combined with other notes 2020) 40' OF AREAS OF SURFACE CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF BOTTOM FLANGE IN VARIOUS LOCATIONS			1			Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COA	ATING FAILURE		4	40	8	3 Square Feet
(General Comments							

Spa	Span 1 Beam 4								
Pla	te Girder								
	ment mber St	Element Name Steel Open Girder/Beam			CS1 Qty 0	CS2 Qty 33	CS3 Qty 0	CS4 Qty 7	Feet
515	St	eel Protective Coating		520	480	0	0	40	Square Feet
Elemer Numbe	Defeat Type Defeat Description				CS	CS Qty	Maint Qty		
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] at bent 1, top 4 2 flange, corrosion with section loss (0.38" average remaining x 2')						2	2 Feet
107	Corrosion	CORROSION WITH FLANGE (0.47" AV BOTTOM FLANGE LONG, THEN 0.47"	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: LEFT BOTTOM FLANGE (0.47" AVERAGE REMAINING X 50"), RIGHT BOTTOM FLANGE (1/4" AVERAGE REMAINING FOR 1.5' LONG, THEN 0.47" AVERAGE REMAINING FOR NEXT 2.5' LONG); LOWER WEB (1/4" AVERAGE REMAINING X 4' X UP					ţ	5 Feet
107	Corrosion	along the length of web, areas of rust				2	33		Feet
107	Corrosion	CORROSION THRO	(combined with other notes 2020) 40' OF AREAS OF SURFACE CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS						Feet
515	Effectiveness (a Protective Coate	tings)	ECTIVE COATING	FAILURE		4	40		Square Feet

General Comments

Structure Number: 120320 Inspection Date: 06/28/2022

Spa	n 1	Beam 5						
Plate	e Girder							
Elen Num	nent nber	Element Name		CS1 Qty	CS2 Qty		CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	37	0	3	Feet
515	Steel Pro	tective Coating	520	480	0	0	40	Square Feet
Elemen Number	Dofoot Typo	Defect Des	cription		CS	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (AVERAGE 1/4" REMAINING FOR 1.5' LONG, THEN 0.40" AVERAGE REMAINING FOR NEXT 1.5' LONG'); LOWER WEB (3/16" AVERAGE REMAINING X 2.5' X UP TO 3.5")			4	3	;	3 Feet
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	37		Feet
107	Corrosion	(combined with other notes 2020) CORROSION THROUGHOUT FU FACES OF WEB AND EDGES O LOCATIONS	JLL LENGTH OF BO	TH	1			Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COA	ATING FAILURE		4	40	8	Square Feet

Spa	an 1	Beam 6						
Pla	te Girder							
	ment mber Steel Op	Element Name en Girder/Beam	Total Qty 40	CS1 Qty 0	CS2 Qty 37	CS3 Qty 0	CS4 Qty 3	Feet
515	Steel Pro	tective Coating	520	480	0	0	40	Square Feet
Elemer Numbe	Dofoot Tuno	Defect Desc	ription		CS	CS Qty	Maint Qty	
107	Corrosion	CORROSION WITH SECTION LOS (0.35" AVERAGE REMAINING X 3	MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, ORROSION WITH SECTION LOSS: BOTTOM FLANGE .35" AVERAGE REMAINING X 3'); LOWER WEB (3/16" VERAGE REMAINING X 3' X UP TO 4") WITH RUST HOLE 2" X 1.5")				3	3 Feet
107	Corrosion	along the length of the beam, bot web, areas of rust scale (no meas			2	37		Feet
107	Corrosion	(combined with other notes 2020) 4 CORROSION THROUGHOUT FUL FACES OF WEB AND EDGES OF LOCATIONS	L LENGTH OF BOT	Ή	1			Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	ΓING FAILURE		4	40	8	S Square Feet
	General Comments							

Span 1		Beam 7						
Plate Gird	der							
Element Number	Elemen	Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Open Girder/Be	am	40	0	35	0	5	Feet
515	Steel Protective Coati	ng	520	480	0	0	40	Square Feet
lement lumber	Defect Type	Defect Description	<u> </u>		CS	CS Qty	Maint Qtv	

Structure	Number: <u>120320</u>			Insped	ction Date: <u>06/28/2022</u>
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 4.5' X UP TO 4" WITH 1" DIAMETER CORROSION HOLE AT 1' OUT).	4	5	5 Feet
107	Corrosion	along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	2	35	Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATING FAILURE	4	40	8 Square Feet

General Comments

Spa	an 1	Beam 8						
Plat	te Girder							
Nur	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	5
107	·	en Girder/Beam	40 530	0	36	0		Feet
515	Steel Pro	tective Coating	520	480	0	0	40	Square Feet
Elemer Numbe	Dofoot Typo	Defect Descr	ription		CS	CS Qty	Maint Qty	
107	Corrosion	CORROSION WITH SECTION LOS (0.40" AVERAGE REMAINING X 4	MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, ORROSION WITH SECTION LOSS: BOTTOM FLANGE 0.40" AVERAGE REMAINING X 4'); LOWER WEB (3/16" VERAGE REMAINING X 4' X UP TO 4") WITH RUST HOLE 16" X 3").				4	I Feet
107	Corrosion	along the length of the beam, bot web, areas of rust scale (no meas			2	36		Feet
107	Corrosion	combined with other notes 2020) 40' OF AREAS OF SURFACE CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS			1			Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	ING FAILURE		4	40		Square Feet
	General Comments							

Spa	an 1			Beam 9							
Pla	te Girder										
Nu	ment mber	E	ement Name		Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty		
107	\$	Steel Open Gird	der/Beam		40	0	38	0	2	Feet	
515	\$	Steel Protective	Coating		520	480	0	0	40	Square F	eet
Elemer Numbe	Dofoct To	/pe		Defect Descriptio	n		cs	CS Qty	Maint Qty		
107	Corrosion	COR (0.45	ROSION WITH " AVERAGE F	MPT ACTION REQUE I SECTION LOSS: B REMAINING X 2'); LC NING X 20" X 2.5")	OTTOM FLAN	IGE É	4	2	:	2 Feet	
107	Corrosion			f the beam, both flar scale (no measurab			2	38		Feet	
107	Corrosion	COR FACE	ROSION THR	er notes 2020) 40' OF OUGHOUT FULL LEI ND EDGES OF FLAN	NGTH OF BOT	TH	2			Feet	
515	Effectiveness Protective Co	(TTERED PRO	TECTIVE COATING	FAILURE		4	40		8 Square	Feet
	General Comm	ents									

Structure Number: 120320 Inspection Date: 06/28/2022

Spa	ın 1	Beam 10						
Plat	e Girder							
Nun	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	35	0	5	Feet
515	Steel Pro	otective Coating	520	480	0	0	40	Square Feet
Elemen Numbe	Dofoot Typo	Defect Descr	ription		CS	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION RI WEST FACE, CORROSION WITH FLANGE (0.37" AVERAGE REMAI (5/16" AVERAGE REMAINING X 3 FLANGE (0.38" AVERAGE REMAI	SECTION LOSS: B INING X 2.5'); LOW ' X UP TO 4"); TOF	OTTOM ER WEB	4	5		5 Feet
107	Corrosion	along the length of the beam, bot web, areas of rust scale (no meas	•		2	35		Feet
107	Corrosion	(combined with other notes 2020) 40' OF AREAS OF SURFACE CORROSION THROUGHOUT FULL LENGTH OF BOTH FACES OF WEB AND EDGES OF FLANGES IN VARIOUS LOCATIONS			1			Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	ING FAILURE		4	40		Square Feet
	General Comments							

n 1	Wearing Sur	face					
halt Wearing Surfa	ce						
nent nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
Wearing S	Surface	1,134	0	218	916	0 S	quare Feet
t Defect Type	Defect Descri	ption		CS	CS Qty	Maint Qty	
Crack (Wearing Surface)	at end bent 1, separation/ crack (1'	nd bent 1, separation/ crack (1" x full width of roadway)			33	33	Square Feet
Crack (Wearing Surface)	throughout wearing surface, map width of roadway x full length)	• • • • • • • • • • • • • • • • • • • •			875	875	Square Feet
Patched Area/Pothole (Wearing Surface)	at southbound lane, 2' from end be asphalt (14.5' x 6" x 1" deep)	ent 1, area of brea	king up	3	8	8	Square Feet
Crack (Wearing Surface)	throughout pedestrian path, transv x 4.5') spaced between 1.5' and 2'	erse cracks (up t	0 1/32"	2	200	200	Square Feet
Patched Area/Pothole (Wearing Surface)	uthbound lane adjacent to bent 1, patched area (4.5' x 4')			2	18		Square Feet
	nent wearing Surface wearing S Defect Type Crack (Wearing Surface) Crack (Wearing Surface) Patched Area/Pothole (Wearing Surface) Crack (Wearing Surface) Crack (Wearing Surface) Crack (Wearing Surface) Patched Area/Pothole	halt Wearing Surface Tenent T	halt Wearing Surface Total Option (Department Name) Wearing Surface Defect Type Defect Description Crack (Wearing at end bent 1, separation/ crack (1" x full width of rosurface) Crack (Wearing throughout wearing surface, map cracks (up to 1/2" width of roadway x full length) Patched Area/Pothole at southbound lane, 2' from end bent 1, area of breat (Wearing Surface) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/2" asphalt (14.5' x 6" x 1" deep) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/2" x 4.5') spaced between 1.5' and 2' Patched Area/Pothole [NEW REPAIR - ASPHALT PATCHING] FORMERLY southbound lane adjacent to bent 1, patched area (4 with cracks (up to 1/8") and potholes (up to 2" x 3" x 1")	halt Wearing Surface Total CS1 Qty Qty Wearing Surface 1,134 0 Defect Type Defect Description Crack (Wearing at end bent 1, separation/ crack (1" x full width of roadway) Surface) Crack (Wearing throughout wearing surface, map cracks (up to 1/2" x full width of roadway x full length) Patched Area/Pothole at southbound lane, 2' from end bent 1, area of breaking up (Wearing Surface) asphalt (14.5' x 6" x 1" deep) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/32" x 4.5') spaced between 1.5' and 2' Patched Area/Pothole [NEW REPAIR - ASPHALT PATCHING] FORMERLY> at (Wearing Surface) southbound lane adjacent to bent 1, patched area (4.5' x 4') with cracks (up to 1/8") and potholes (up to 2" x 3" x 1"	halt Wearing Surface Total CS1 CS2 Qty Qty Qty Wearing Surface 1,134 0 218 Defect Type Defect Description CS Crack (Wearing at end bent 1, separation/ crack (1" x full width of roadway) 3 Surface) Crack (Wearing throughout wearing surface, map cracks (up to 1/2" x full sufface) width of roadway x full length) Patched Area/Pothole at southbound lane, 2' from end bent 1, area of breaking up (Wearing Surface) asphalt (14.5' x 6" x 1" deep) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/32" 2 Surface) x 4.5') spaced between 1.5' and 2' Patched Area/Pothole [NEW REPAIR - ASPHALT PATCHING] FORMERLY> at (Wearing Surface) southbound lane adjacent to bent 1, patched area (4.5' x 4') with cracks (up to 1/8") and potholes (up to 2" x 3" x 1"	halt Wearing Surface Total CS1 CS2 CS3 Defect Type Element Name Qty Qty Qty Qty Wearing Surface Defect Description CS CS Qty Crack (Wearing at end bent 1, separation/ crack (1" x full width of roadway) Surface) Crack (Wearing throughout wearing surface, map cracks (up to 1/2" x full 3 875 Surface) Patched Area/Pothole at southbound lane, 2' from end bent 1, area of breaking up (Wearing Surface) asphalt (14.5' x 6" x 1" deep) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/32" 2 200 Surface) x 4.5') spaced between 1.5' and 2' Patched Area/Pothole [NEW REPAIR - ASPHALT PATCHING] FORMERLY> at Southbound lane adjacent to bent 1, patched area (4.5' x 4') with cracks (up to 1/8") and potholes (up to 2" x 3" x 1"	halt Wearing Surface Total CS1 CS2 CS3 CS4 Aber Element Name Qty Qty Qty Qty Qty Qty Qty Qty Wearing Surface 1,134 0 218 916 0 S Defect Type Defect Description CS CS Qty Maint Qty Crack (Wearing at end bent 1, separation/ crack (1" x full width of roadway) 3 33 33 Surface) Crack (Wearing throughout wearing surface, map cracks (up to 1/2" x full 3 875 875 Surface) width of roadway x full length) Patched Area/Pothole at southbound lane, 2' from end bent 1, area of breaking up 3 8 8 (Wearing Surface) asphalt (14.5' x 6" x 1" deep) Crack (Wearing throughout pedestrian path, transverse cracks (up to 1/32" 2 200 200 Surface) x 4.5') spaced between 1.5' and 2' Patched Area/Pothole [NEW REPAIR - ASPHALT PATCHING] FORMERLY> at (Wearing Surface) southbound lane adjacent to bent 1, patched area (4.5' x 4') with cracks (up to 1/8") and potholes (up to 2" x 3" x 1"

Span 1		Left Bride	ge Rail					
Steel R	ail							
Element Number		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
330	Metal Br	ridge Railing	40	39	0	1	0	Feet
515	Steel Pr	otective Coating	90	90	0	0	0	Square Feet
Element Number	Defeat Type Defeat Def				CS	CS Qty	Maint Qty	
330 Co	nnection	•	MPT ACTION REQUEST] AT FIFTH POST BEAM 1, (1) MISSING CONNECTION			1	•	1 Feet
Gen	eral Comments							

Structure Number: 120320 Inspection Date: 06/28/2022

Spa	an 2	Deck						
Ste	el Deck Corrugated	b						
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
30	Steel De	ck Corrugated/Orthotropic/Etc.	1,120	720	400	0	0 5	Square Feet
515	Steel Pro	etective Coating	1,120	720	0	0	400 S	Square Feet
Elemer Numbe	Dofoct Typo	Defect Descriptio	n		CS	CS Qty	Maint Qty	
30	O Corrosion underside of deck adjacent to seems and weep holes, are of surface rust/ rust scale (no measurable loss) with efflorescence				2	400		Square Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATING	FAILURE		4	400	40	Square Feet

Beam 1						
Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
en Girder/Beam	40	20	20	0	0	Feet
tective Coating	520	500	0	0	20	Square Feet
ement umber Defect Type Defect Description			CS	CS Qty	Maint Qty	
along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random		2	20		Feet	
SCATTERED PROTECTIVE CO.	ATING FAILURE		4	20	4	4 Square Feet
	Element Name en Girder/Beam tective Coating Defect Des along the length of the beam, b web, areas of rust scale (no me	Element Name Qty en Girder/Beam 40 tective Coating 520 Defect Description along the length of the beam, both flanges and lowered.	Element Name Qty Qty en Girder/Beam 40 20 tective Coating 520 500 Defect Description along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	Element Name Qty Qty Qty en Girder/Beam 40 20 20 tective Coating 520 500 0 Defect Description CS along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	Element Name Qty Qty Qty Qty Qty en Girder/Beam 40 20 20 0 tective Coating 520 500 0 0 Defect Description CS CS Qty along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	Element Name Qty Qty Qty Qty Qty Qty Qty en Girder/Beam 40 20 20 0 0 0 tective Coating 520 500 0 0 0 20 Defect Description CS CS Qty Qty along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random

Spa	an 2	Beam 2						
Pla	te Girder							
	ment mber Steel O	Element Name pen Girder/Beam	Total Qty 40	CS1 Qty 0	CS2 Qty 40	CS3 Qty 0	CS4 Qty 0 F	- eet
515	Steel Pr	rotective Coating	520	480	0	0	40 \$	Square Feet
Elemei Numbe	Dofoct Typo	Defect D	Description		CS	CS Qty	Maint Qty	
107	Corrosion		along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random			40		Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE C	TECTIVE COATING FAILURE			40	8	Square Feet
	General Comments							

Span 2		Beam 3						
Plate Gi	rder							
Element Number	Element	Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Open Girder/Bea	m	40	0	40	0	0	Feet
515	Steel Protective Coatin	g	520	480	0	0	40	Square Feet
Element Number	Defect Type	Defect Description			CS	CS Qty	Maint Qty	

Structure Number: 120320 Inspection Date: 06/28/2022							
107	Corrosion	along the length of the beam, both flanges and lower 2" of web, areas of rust scale (no measurable loss) at random	2	40	Feet		
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATING FAILURE	4	40	8 Square Feet		

Spa	n 2		Beam	1					
Spa	111 2		Deam	4					
Plat	te Girder								
	ment mber		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107		Steel Op	en Girder/Beam	40	0	40	0	0	Feet
515		Steel Pro	tective Coating	520	480	0	0	40	Square Feet
 Elemer Numbe	Dofoct	Туре	Defec	t Description		CS	CS Qty	Maint Qty	
107	Corrosion		at bent 1, lower web, corro average remaining x 14" x	,	/16"	2	2		Feet
107	Corrosion		along the length of the bea web, areas of rust scale (no			2	38		Feet
515	Effectivenes Protective (SCATTERED PROTECTIVE	COATING FAILURE		4	40		8 Square Feet

Spai	n 2	Beam 5						
Plate	e Girder							
Elen Num	. •	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	40	0	0 1	-eet
515	Steel Pro	tective Coating	520	480	0	0	40 \$	Square Feet
Element Number	Dofoct Typo	Defect De	scription		CS	CS Qty	Maint Qty	
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	40		Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE CO	ATING FAILURE		4	40	8	Square Feet
(General Comments							

Spa	n 2	Beam 6						
Plat	e Girder							
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel O	oen Girder/Beam	40	0	40	0	0	Feet
515	Steel P	otective Coating	520	480	0	0	40	Square Feet
Elemen Numbe	Dofoct Typo	Defect Des	cription		CS	CS Qty	Maint Qty	
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	40		Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COA	ATING FAILURE		4	40		8 Square Feet
-	Canaral Comments							

General Comments

General Comments

Spa	an 2	Beam 7					
Pla	te Girder						
Nu	ement mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty
107 515		Open Girder/Beam Protective Coating	40 520	20 500	20 0	0	0 Feet 20 Square Feet
		Totective coating	320	300			
Eleme Numb	Dofoct Typo	Defect De	escription		CS	CS Qty	Maint Qty
107	Corrosion	along the length of the beam, web, areas of rust scale (no m			2	20	Feet
515	Effectiveness (Ste Protective Coating		DATING FAILURE		4	20	4 Square Feet
	General Comments						

Spar	n 2	Beam 8						
Plate	e Girder							
Elem Num	. •	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel O _l	pen Girder/Beam	40	20	20	0	0	Feet
515	Steel Pr	rotective Coating	520	500	0	0	20	Square Feet
Element Number	Dofoot Typo	Defect Des	cription		CS	CS Qty	Maint Qty	
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me			2	20		Feet
515	Effectiveness (Steel	SCATTERED PROTECTIVE COA	ATING FAILURE		4	20		4 Square Feet

Protective Coatings)
General Comments

General Comments

Span 2 Beam 9 Plate Girder CS4 Element Total CS₁ CS2 CS3 Number Element Name Qty Qty Qty Qty Qty Steel Open Girder/Beam 107 40 10 30 0 0 Feet 0 515 Steel Protective Coating 520 490 0 30 Square Feet Element Maint **Defect Description** Defect Type CS CS Qty Number Qty along the length of the beam, both flanges and lower 2" of 107 Corrosion 2 30 Feet web, areas of rust scale (no measurable loss) at random SCATTERED PROTECTIVE COATING FAILURE 515 Effectiveness (Steel 4 30 6 Square Feet Protective Coatings)

Span 2		Beam 10						
Plate G	irder							
Element Number	-	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel C	pen Girder/Beam	40	0	40	0	0	Feet
515	Steel F	rotective Coating	520	480	0	0	40	Square Feet
lement lumber	Defect Type	Defect De	scription		CS	CS Qty	Maint Qty	
107 Co	rrosion	along the length of the beam, I web, areas of rust scale (no m	•		2	40	·	Feet

Structure Number: 120320 Inspection Date: <u>06/28/2022</u>

4

40

8 Square Feet

Effectiveness (Steel SCATTERED PROTECTIVE COATING FAILURE

Protective Coatings)

General Comments

Span 2 Wearing Surface **Asphalt Wearing Surface** Element CS1 CS2 CS3 CS4 Total Element Name Number Qty Qty Qty Qty Qty Wearing Surface 0 Square Feet 510 1,120 0 267 853 Element Maint Defect Type **Defect Description** CS CS Qty Number Qty throughout wearing surface, map cracks (up to 1/2" x full width of roadway x full length) 510 Crack (Wearing 3 845 845 Square Feet Surface) 510 Patched Area/Pothole at northbound lane near midspan, patched area (45" x 2') 3 8 8 Square Feet with cracks (up to 1/32") (Wearing Surface) throughout pedestrian path, transverse cracks (up to 1/32" x 4.5') spaced between 1.5' and 2' $\,$ 510 Crack (Wearing 2 267 267 Square Feet Surface) General Comments

Spa	an 3	Deck						
Ste	el Deck Corrugate	d						
Nui	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	·
30	Steel De	ck Corrugated/Orthotropic/Etc.	1,120	770	350	0	0 \$	Square Feet
515	Steel Pro	otective Coating	1,120	770	0	0	350	Square Feet
Elemer Numbe	Dofoct Typo	Defect Descrip	tion		CS	CS Qty	Maint Qty	
30	Corrosion	underside of deck adjacent to seem of surface rust/ rust scale (no meas efflorescence		,	2	350		Square Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATIN	G FAILURE		4	350	35	Square Feet
	General Comments							

Spa	ın 3	Beam 1						
Plat	e Girder							
	ment nber Steel Op	Element Name en Girder/Beam	Total Qty 40	CS1 Qty 22	CS2 Qty 18	CS3 Qty 0	CS4 Qty 0	Feet
515	Steel Pro	tective Coating	520	502	0	0	18	Square Feet
Elemen Numbe	Dofoct Typo	Defect De	scription		CS	CS Qty	Maint Qty	
107	Corrosion	near midspan, east face of top with section loss (less than 1/1		osion	2	8		Feet
107	Corrosion	along the length of the beam, be web, areas of rust scale (no me	•		2	10		Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE CO	ATING FAILURE		4	18		3 Square Feet
	General Comments							

Sp <i>a</i> Plat	n 3 e Girder	Beam 2						
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	40	0	0	Feet
515	Steel Pro	otective Coating	520	480	0	0	40	Square Feet
Elemer Numbe	Dofoct Typo	Defect De	scription		CS	CS Qty	Maint Qty	
107	Corrosion	along the length of the beam, be web, areas of surface rust/ rus at random	•		2	40	-	Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE CO	ATING FAILURE		4	40		8 Square Feet

Spa	an 3	Beam 3						
Pla	te Girder							
Nui	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	en Girder/Beam	40	0	33	2	5	Feet
515	Steel Pro	otective Coating	520	480	0	0	40	Square Feet
Elemer Numbe	Dofoct Typo	Defect Description			CS	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUES CORROSION WITH SECTION LOSS: BO (0.38" AVERAGE REMAINING X 4.5'); LO AVERAGE REMAINING X 5' X UP TO 3")	TTOM FLAN	NGE	4	5		5 Feet
107	Corrosion	at bent 2, top flange, corrosion with sect average remaining x 15")	ion loss (0	.40"	3	2	:	2 Feet
107	Corrosion	along the length of the beam, both flang web, areas of rust scale (no measurable			2	33		Feet
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATING FA	ILURE		4	40		8 Square Feet
	General Comments							

Spa	an 3		В	eam 4						
Pla	te Girder									
	ment mber	Steel Ope	Element Name en Girder/Beam		Total Qty 40	CS1 Qty 16	CS2 Qty 20	CS3 Qty 0	CS4 Qty 4	Feet
515		Steel Pro	tective Coating		520	496	0	0	24	Square Feet
Elemer Numbe	Dofoct 7	Гуре]	Defect Description			CS	CS Qty	Maint Qty	
107	Corrosion		[MUNICIPAL PROMPTORROSION WITH SI (0.45" AVERAGE REMAININ	ECTION LOSS: BOTT MAINING X 3.5'); LOW	OM FLAN ER WEB (GE	4	4	2	l Feet
107	Corrosion		along the length of th web, areas of rust sca	,			2	20		Feet
515	515 Effectiveness (Steel SCA Protective Coatings)		SCATTERED PROTEC	CTIVE COATING FAIL	.URE		4	24		Square Feet
	General Comments									

Spa	n 3	Beam 5						
Plat	e Girder							
	ment nber Steel O	Element Name pen Girder/Beam	Total Qty 40	CS1 Qty 6	CS2 Qty 30	CS3 Qty 0	CS4 Qty 4	Feet
515	Steel P	otective Coating	520	486	0	0	34	Square Feet
Elemen Numbe	Dofoct Typo	Defect Des	cription		CS	CS Qty	Maint Qty	
107	Corrosion	CORROSION WITH SECTION LC (3/8" AVERAGE REMAINING X 3	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (3/8" AVERAGE REMAINING X 3'); LOWER WEB (3/16" AVERAGE REMAINING X 3.5' X UP TO 3")			4		4 Feet
107	Corrosion		beam, both flanges and lower 2" of e (no measurable loss) at random		2	30		Feet
515	Effectiveness (Steel Protective Coatings)		ATING FAILURE		4	34		7 Square Feet

s

Span 3		Beam 6						
Elemer Numbe		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Ope	en Girder/Beam	40	14	20	0	6	Feet
515	Steel Pro	tective Coating	520	494	0	0	26	Square Feet
lement Number	Defect Type	Defect Des	cription		CS	CS Qty	Maint Qty	
107 Co	orrosion	[MUNICIPAL PROMPT ACTION CORROSION WITH SECTION LG (0.35" AVERAGE REMAINING X 6' X U	OSS: BOTTOM FLAN (6'); LOWER WEB (3	IGE	4	6	(6 Feet
107 C	Corrosion along the length of the beam, bot web, areas of rust scale (no measure)				2	20		Feet
	Effectiveness (Steel SCATTERED PRO Protective Coatings)		ATING FAILURE		4	26	!	5 Square Feet
Ge	neral Comments							

Spa	an 3		Beam 7						
Pla	te Girder								
	ement mber St	Element Name eel Open Girder/Beam		Total Qty 40	CS1 Qty 14	CS2 Qty 20	CS3 Qty 0	CS4 Qty 6	
515	St	eel Protective Coating		520	494	0	0	26	Square Feet
Elemei Numbe	Dofoct Tyr	e	Defect Description	n		CS	CS Qty	Maint Qty	
107	Corrosion	CORROSION WITH (0.42" AVERAGE F	MPT ACTION REQUE I SECTION LOSS: BOREMAINING X UP TO REMAINING X 5.5' X I	OTTOM FLAN 5.5'); LOWER	IGE É	4	6		6 Feet
107	Corrosion	0 0	f the beam, both flan ace rust/ rust scale (0		2	20		Feet
515	515 Effectiveness (Steel SCATTERED PROT Protective Coatings)		TECTIVE COATING I	FAILURE		4	26		5 Square Feet
	Canaral Camma	a+a							

			Beam 8						
Plat	e Girder								
Nun	ment nber	Elemen		Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	;	Steel Open Girder/Be	am	40	4	30	2	4	Feet
515	;	Steel Protective Coat	ng	520	484	0	0	36	Square Feet
Elemen Numbe	Dofoot T	уре	Defect Descript	ion		CS	CS Qty	Maint Qty	
107	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.375" AVERAGE REMAINING X UP TO 4"); LOWER WEB (1/8" AVERAGE REMAINING X 3" X UP TO 6" LONG WITH PERFORATIONS, THEN 3/16" REMAINING IN LOWER 3" OF THE WEB FOR THE NEXT 3.5' LONG)			NGE R WEB B WITH	4	4	•	1 Feet
107	Corrosion	average re	at bent 2, corrosion with section loss: top flange (0.43" average remaining x 11"); bottom flange (0.43" average remaining x 16")				2	2	2 Feet
107	Corrosion		ength of the beam, both fl of rust scale (no measura			2	30		Feet
515	Effectiveness Protective Co	(D PROTECTIVE COATING	G FAILURE		4	36	-	7 Square Feet

Spa	an 3	Beam 9						
Plat	te Girder							
Nur	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
107	Steel Op	oen Girder/Beam	40	0	40	0	0 1	Feet
515	Steel Pr	otective Coating	520	480	0	0	40	Square Feet
Elemer Numbe	Dofoct Typo	Defect Desc	cription		CS	CS Qty	Maint Qty	
107	Corrosion	at bent 2, top flange, corrosion w 1/16" loss x 5')	vith section loss (le	ss than	2	5	-	Feet
107	Corrosion		h of the beam, both flanges and lower 2" of ust scale (no measurable loss) at random		2	32		Feet
107	Corrosion	•	rrosion with section loss: bottom flange oss x up to 3'); lower web (5/16" average up to 2")		2	3		Feet
515	515 Effectiveness (Steel SCATTERED PRO Protective Coatings)		TING FAILURE		4	40	8	Square Feet
	General Comments		•	•			,	

ın 3	Beam 10						
e Girder							
ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
Steel Op	oen Girder/Beam	40	0	40	0	0	Feet
Steel Pr	otective Coating	520	480	0	0	40	Square Feet
t r Defect Type	Defect Des	cription		CS	CS Qty	Maint Qty	
Corrosion	at bent 2, top flange, west face, (less than 1/16" loss x 4' x 4")	corrosion with sect	ion loss	2	4		Feet
Corrosion				2	36		Feet
		ATING FAILURE		4	40		8 Square Feet
	e Girder ment nber Steel Op Steel Pr t Defect Type Corrosion	e Girder ment mber Element Name Steel Open Girder/Beam Steel Protective Coating t r Defect Type Defect Des Corrosion at bent 2, top flange, west face, (less than 1/16" loss x 4' x 4") Corrosion along the length of the beam, be	re Girder Total Otty Steel Open Girder/Beam 40 Steel Protective Coating 520 It Defect Type Defect Description Corrosion at bent 2, top flange, west face, corrosion with sect (less than 1/16" loss x 4' x 4") Corrosion along the length of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam, both flanges and lower the correction of the beam of the correction of the correction of the correction of the beam of the correction of th	ment Element Name Qty Qty Steel Open Girder/Beam 40 0 Steel Protective Coating 520 480 It Defect Type Defect Description Corrosion at bent 2, top flange, west face, corrosion with section loss (less than 1/16" loss x 4' x 4")	re Girder Total CS1 CS2 CS2 Qty Qty Qty Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Qty Qty Qty Qty Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Qty Qty Qty Qty Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 CS2 Steel Open Girder/Beam 40 0 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS1 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protective Coating 520 480 0 Total CS2 CS2 Steel Open Girder/Beam 40 0 40 Steel Protect Type 520 480 0 Steel Protect Type 520 480 0 Steel Protective Coating 520 480 0 Steel Protect Type 520 480 0 Steel	ment Element Name Qty Qty Qty Qty Qty Steel Open Girder/Beam 40 0 40 0 Steel Protective Coating 520 480 0 0 tr Defect Type Defect Description CS CS Qty Corrosion at bent 2, top flange, west face, corrosion with section loss (less than 1/16" loss x 4' x 4") Corrosion along the length of the beam, both flanges and lower 2" of 2 36	Total CS1 CS2 CS3 CS4

Spar	n 3	Wearing S	Surface					
Aspl	nalt Wearing Surf	ace						
Elem Num		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
510	Wearing	Surface	1,134	0	200	934	0 S	quare Feet
Element Number	Dofoct Typo	Defect De	scription		CS	CS Qty	Maint Qty	
	Crack (Wearing Surface)	at end bent 2, separation/ cracl roadway)	k (3/4" x full width of		3	33	33	Square Feet
	Crack (Wearing Surface)	throughout wearing surface, m width of roadway x full length)	throughout wearing surface, map cracks (up to 1/2" x full			901	901	Square Feet
	Crack (Wearing throughout pedestric Surface) x 4.5') spaced betwe		ansverse cracks (up to I 2'	1/32"	2	200	200	Square Feet
(General Comments							

Span 3		Left Bridg	e Rail					
Steel Rai	il							
Element Number 330	Metal E	Element Name iridge Railing	Total Qty 40	CS1 Qty 38	CS2 Qty 2	CS3 Qty 0	CS4 Qty 0	
515	Steel P	rotective Coating	90	90	0	0	0	Square Feet
Element Number	Defect Type	Defect Des	cription		CS	CS Qty	Maint Qty	
330 Dama	330 Damage left bridge rail at 1		ent 2, impact damag	e (2')	2	2	•	Feet
General Comments								

Span	Span 3			Right Bridge Rail						
Steel	l Rail									
Elem Num			Element Name		Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
330		Metal B	Bridge Railing		40	36	4	0	0	Feet
515		Steel P	rotective Coating		90	90	0	0	0	Square Feet
Element Number	Dofoo	t Type		Defect Description			CS	CS Qty	Maint Qty	
330	Damage		right bridge rail at ı	midspan, impact dama	age (3.5')		2	4		Feet
G	General Comments									

Ben	t 1	Footing						
Reir	nforced Concrete	Footing						
Nun	ment nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
220		ced Concrete Pile Cap/Footing	38	35	0	3	0 Fe	et
Elemen Numbe	Dofoot Typo	Defect Descrip	tion		CS	CS Qty	Maint Qty	
220	Delamination/Spall	north face below pile 5, honeycomb deep)	(2.5' x 10" x up	to 3/4"	3	3	3	Feet
	General Comments							<u></u>

Ben								
20.	t 1	Cap 1						
Stee	el Pier Cap							
	ment nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
231	Steel	Pier Cap	34	0	18	0	16	Feet
515	Steel	Protective Coating	210	140	0	0	70	Square Feet
Elemen Numbe	Dofoot Typo	Defect Descr	ription		CS	CS Qty	Maint Qty	
231	Corrosion	[MUNICIPAL PROMPT ACTION RI bay 3, corrosion with section loss average remaining x 39"); lower v remaining x 39" x 2"); web stiffen average remaining x 5" x 2.5")	s: bottom flange (1 veb (7/16" average	/4" e	4	4	4	Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION RI beam 2, corrosion with section lo average remaining x 2') top flang x 1'); lower web (7/16" average re stiffener (3/16" average remaining	ss: bottom flange e (0.42" average re maining 2.5' x 2");	(0.35" emaining	4	3	3	Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION RI faces below bays 7 through 9, co bottom flange (5/16" average rem (7/16" average remaining x 8' x 2" as 0.15" average remaining x 5" x	rrosion with section aining x 8.5'); lowe); web stiffeners (;	on loss: er web	4	9	g) Feet
231	Corrosion	along the length of the cap, both web, areas of surface rust/ rust sat random			2	18		Feet

Bent	1	Pile 1						
Steel	Pile							
Eleme Numb		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	•	1	0	1	0	0 E	ach
515	Steel Pro	tective Coating	77	74	0	0	3 8	Square Feet
Element Number	Defect Type	Defect Des	cription		CS	CS Qty	Maint Qty	
225 C	Corrosion	along the length of the pile, surf pile, rust scale (no measurable l		top of	2	1		Each
	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COA	TING FAILURE		4	3	1	Square Feet
Ge	eneral Comments							

Bent 1		Pile 2						
Steel Pile								
Element Number		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	•	1	0	1	0	0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
Element Number	Defect Type	Defect Des	cription		CS	CS Qty	Maint Qty	
225 Corro	sion	along the length of the pile, surface rust at random; top of pile, rust scale (no measurable loss)		2	1		Each	
	tiveness (Steel ctive Coatings)	SCATTERED PROTECTIVE COA	TING FAILURE		4	3		1 Square Feet

Bent 1	1	Pile 3						
Steel	Pile							
Eleme Numb	• • •	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	2	1	0	1	0	0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
Element Number	Defect Type	Defect Desc	ription		CS	CS Qty	Maint Qty	
225 C	Corrosion	along the length of the pile, surfapile, rust scale (no measurable le		top of	2	1		Each
	ffectiveness (Steel rotective Coatings)	SCATTERED PROTECTIVE COA	TING FAILURE		4	3		1 Square Feet
Ge	eneral Comments							

Ber	nt 1		Pil	le 4						
Ste	el Pile									
	ment mber		Element Name		Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225		Steel Pile	;		1	0	1	0	0	Each
515		Steel Pro	tective Coating		77	74	0	0	3	Square Feet
Elemer Numbe	Dofoct 7	Туре	D	Defect Description			CS	CS Qty	Maint Qty	
225	Corrosion		along the length of the pile, rust scale (no me		t random;	top of	2	1		Each
515	Effectivenes Protective C		SCATTERED PROTEC	CTIVE COATING FAIL	LURE		4	3		1 Square Feet
	General Comr	ments								

Ber	nt 1	Pile 5						
Ste	el Pile							
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pil	e	1	0	1	0	0	Each
515	Steel Pro	otective Coating	77	74	0	0	3	Square Feet
Elemer Numbe	Dofoot Typo	Defect Desc	ription		CS	CS Qty	Maint Qty	
225	Corrosion	along the length of the pile, surfa pile, rust scale (no measurable lo		top of	2	1		Each
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	TING FAILURE		4	3		1 Square Feet
	General Comments							

Bent 1		Pile 6						
Steel Pil	е							
Element Number	Element I	Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile		1	0	1	0	-	Each
515	Steel Protective Coating	g	77	74	0	0	3	Square Feet
lement Jumber	Defect Type	Defect Description			CS	CS Qty	Maint Qtv	

Structure Number: 120320

225 Corrosion along the length of the pile, surface rust at random; top of pile, rust scale (no measurable loss)

515 Effectiveness (Steel SCATTERED PROTECTIVE COATING FAILURE 4 3 1 Square Feet

General Comments

Protective Coatings)

End	d Bent 1	Abutment						
Rei	nforced Concrete	Abutment						
	ement mber Reinford	Element Name ed Concrete Abutment	Total Qty 60	CS1 Qty 54	CS2 Qty 0	CS3 Qty 3	CS4 Qty 3 F	eet
Elemei Numbe	Dofoct Typo	Defect Description			CS	CS Qty	Maint Qty	
215	Delamination/Spall	[MUNICIPAL PROMPT ACTION REQUES WINGWALL ADJACENT TO CURB, SPA DEEP) WITH EXPOSED RUSTED REBAR SHOWS SIGNS OF ALKALAI SILICA REA	LĹ (2.5' X 1. R. THE CON	5' X 3"	4	3	5	Feet
215	Delamination/Spall	southwest wingwall adjacent to deck, sp deep)	oall (9" x 7"	x 2.5"	3	1	1	Feet
215	Efflorescence/Rust Staining	southeast wingwall at east end, delamin cracks (up to 1/32") with efflorescence by		1.5') with	3	2	2	Feet
	General Comments							

End E	Bent 1	Concrete	: Cap					
Reinfo	orced Concrete	Pier Cap						
Eleme Numb		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
234	Reinford	ed Concrete Pier Cap	48	45	0	3	0	Feet
Element Number	Defect Type	Defect De	escription		cs	CS Qty	Maint Qty	
234 🛭	Delamination/Spall	31" X 7" X 1 1/2" DEEP SPALL IN TOP OF CAP BENEATH BEAM 1		3	3	;	3 Feet	
Ge	eneral Comments							

End Bent 1		Steel Cap						
Stee	el Pier Cap							
Elen Num		Element Name		CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
231	Steel Pie	er Cap	34	23	0	0	11 F	eet
515	Steel Pro	tective Coating	110	0	0	0	110 \$	Square Feet
Elemen Number	Dofoot Typo	Defect Desc	ription		CS	CS Qty	Maint Qty	
231	Corrosion	[MUNICIPAL PROMPT ACTION R THE LOWER 3" OF WEB STIFFE! WITH 100% SECTION LOSS.	•		4	6	6	Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION R FLANGE EAST OF BEAM 7, COR LOSS (0.28" AVERAGE REMAINI	ROSION WITH SEC		4	2	2	Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION R FLANGE EAST OF BEAM 8, COR LOSS (0.28" AVERAGE REMAINI	ROSION WITH SEC		4	2	2	Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION R THE THIRD WEB STIFFENER, LC WITH SECTION LOSS [AVERAGE	WER 3", CORROS	ION	4	1	1	Feet
515	•				4	110	110	Square Feet

Ben	t 2	Cap 1						
Stee	el Pier Cap							
Nun		Element Name		CS1 Qty	CS2 Qty	Qty	CS4 Qty	
231	Steel	Steel Pier Cap		0	16	0	18	Feet
515	Steel	Steel Protective Coating		140	0	0	70	Square Feet
Elemen Number	Dofoot Tuno	Defect Des	cription		CS	CS Qty	Maint Qty	
231	Corrosion	[MUNICIPAL PROMPT ACTION REQUEST] north face below beam 3, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 5'); lower web (0.43" average remaining x 3' x 2.5")				5	5	5 Feet
231	Corrosion	[MUNICIPAL PROMPT ACTION I bays 4 through 6, corrosion with flange (0.33" average remaining than 1/16" loss x 9' x 2"); web st average 3/16" remains.	n section loss: botto x 5.5" x 9'); lower w	om veb (less	4	9	ξ	P Feet
231	Corrosion	bay 7, corrosion with section logaverage remaining x 5.5" x 3.5'); remaining x 5.5" x 3.5'); lower w	average 3/16" remains. [MUNICIPAL PROMPT ACTION REQUEST] north face below bay 7, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 3.5'); top flange (0.35" average remaining x 5.5" x 3.5'); lower web (less than 1/16" loss x 3.5' x 2"); web stiffeners (less than 1/16" loss x 5" x 2")				2	1 Feet
231	Corrosion	along the length of the cap, both web, areas of surface rust/ rust at random			2	16		Feet
515	Effectiveness (Ste		TING FAILURE		4	70	21	Square Feet

Bent	2	Pile 1						
Steel	Pile							
Elem Numb		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile)	1	0	1	0	0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
lement Jumber	Defect Type	Defect Des	scription		CS	CS Qty	Maint Qty	
225	Corrosion	along the length of the pile, sur pile, rust scale (no measurable		top of	2	1		Each
	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE CO.	ATING FAILURE		4	3	1	Square Feet
G	Seneral Comments							

Ben	t 2	Pile 2						
Stee	el Pile							
Elen Num	nent nber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	9	1	0	1	0	0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
Elemen Number	Dofoct Typo	Defect Descri	ption		CS	CS Qty	Maint Qty	
225	Corrosion	along the length of the pile, surface pile, rust scale (no measurable los		top of	2	1		Each
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	NG FAILURE		4	3		1 Square Feet

General Comments

Bent 2	2	Pile 3						
Steel I	Pile							
Elemei Numbe 225		Element Name	Total Qty 1	CS1 Qty 0	CS2 Qty 1	CS3 Qty 0	CS4 Qty 0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
Element Number	Defect Type	Defect Des	scription		CS	CS Qty	Maint Qty	
225 C	orrosion	along the length of the pile, sur pile, rust scale (no measurable		top of	2	1	-	Each
	ffectiveness (Steel rotective Coatings)	SCATTERED PROTECTIVE CO.	ATING FAILURE		4	3		1 Square Feet
Ge	neral Comments							

Ben	it 2	Pile 4						
Stee	el Pile							
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	9	1	0	1	0	0	Each
515	Steel Pro	tective Coating	77	74	0	0	3	Square Feet
Elemen Numbe	Dofoct Typo	Defect Desc	cription		CS	CS Qty	Maint Qty	
225			of the pile, surface rust at random; top of measurable loss)		2	1		Each
515	515 Effectiveness (Steel SCATTERED PRO Protective Coatings)		TING FAILURE		4	3		1 Square Feet
-	General Comments							

Ber	nt 2	Pile 5						
Ste	el Pile							
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile		1	0	1	0	0 Each	
515	Steel Pro	tective Coating	77	74	0	0	3 Square Feet	
Elemer Numbe	Dofoot Typo	Defect Descr	iption		CS	CS Qty	Maint Qty	
225	Corrosion	along the length of the pile, surfa- pile, rust scale (no measurable lo		top of	2	1	Each	
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COAT	ING FAILURE		4	3	1 Square Feet	

Ber	nt 2	Pile 6						
Ste	el Pile							
	ment mber	Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
225	Steel Pile	e	1	0	1	0	0	Each
515	Steel Pro	otective Coating	77	74	0	0	3	Square Feet
Elemer Numbe	Dofoct Typo	Defect Descri	ption		CS	CS Qty	Maint Qty	
225	Corrosion	along the length of the pile, surfact pile, rust scale (no measurable los		top of	2	1		Each
515	Effectiveness (Steel Protective Coatings)	SCATTERED PROTECTIVE COATI	NG FAILURE		4	3		1 Square Feet
	General Comments							

End	Bent 2	Abutment						
Rein	forced Concrete	Abutment						
Elen Num		Element Name	Total Qty	CS1 Qty	CS2 Qty	CS3 Qty	CS4 Qty	
215	Reinforced Concrete Abutment 61 28			7	26	0 F	eet	
Element Number	Dofoot Typo	Defect Desc	cription		CS	CS Qty	Maint Qty	
215	Delamination/Spall		nwest wingwall adjacent to beam 1, spall/ delamination 2.5' x up to 2" deep) with cracks (up to 1/4") with rescence buildup			3	8	Feet
215	Cracking (RC and Other)	bay 1, transverse crack (up to 1/	8" x 27")		3	3	3	Feet
215	Cracking (RC and Other)	abutment adjcent to beam 10, ve	ertical crack (1/4" x :	2')	3	1	1	Feet
215	Cracking (RC and Other)	bays 8 and 9, diagonal crack (up spalls (up to 7" x 3" x 1.5" deep)		edge	3	5	5	Feet
215	Cracking (RC and Other)	at base of the abutment between transverse crack (up to 1/4" x 14 1.5" x 1" deep)	, ,	up to	3	14	14	Feet
215	Patched Area	northeast wingwall, previously re	eplaced (7')		2	7		Feet

End	Bent 2	Concrete C	Сар					
Reir	nforced Concrete	Pier Cap						
	ment nber Reinfor	Element Name ced Concrete Pier Cap	Total Qty 48	CS1 Qty 45	CS2 Qty 0	CS3 Qty 2	CS4 Qty 1 F	eet
Elemen Numbe	Dofoot Typo	Defect Desc	cription		CS	CS Qty	Maint Qty	
234	Cracking (RC and Other)	• • • • • • • • • • • • • • • • • • • •			4	1	1	Feet
234	Cracking (RC and Other)	concrete cap below beam 10, ver full height) with efflorescence bu	` '	3/16" x	3	2	2	Feet
	Conoral Comments	Tull fleight) with emorescence bu	illuup					

End	Bent 2		Steel C	Сар						
Stee	el Pier Cap									
	ment nber S	Elem	nent Name		Total Qty 34	CS1 Qty 19	CS2 Qty 0	CS3 Qty 0	CS4 Qty 15	Feet
515	S	Steel Protective C	oating		110	0	0	0	110	Square Feet
Elemen Numbe	Dofoot To	/pe	Defect	Description			CS	CS Qty	Maint Qty	
231	Corrosion	stiffene	IPAL PROMPT ACT r below beam 9, cor r remaining x 4" x 5'	rosion with sec			4	1	1	Feet
231	Corrosion	below b (0.29" a average	IPAL PROMPT ACT eam 8, corrosion w verage remaining x remaining x 6" x 2. ng x 5" x 1")	ith section loss 18" x 5"); uppe	top flang web (7/1	je 6"	4	2	2	? Feet
231	5 ,				nge 6" 7/16"	4	6	6	5 Feet	
231	Corrosion	betweer flange (average (7/16" a	IPAL PROMPT ACT n bays 5 and 6, cor 1/4" average remain remaining x 6' x up verage remaining x rerage remaining x	rosion with sec ning x 5.5' x 5"); o to full height) 5'); web stiffen	tion loss: lower we bottom fla ers (as litt	top b (7/16" ange	4	6	6	5 Feet
515	Effectiveness Protective Coa		CTIVE COATING FA	ILED			4	110	110	Square Feet

Elements Verfied

Location	Name	Component	Element Name	Amount
Span 1	Deck	Steel Deck Corrugated	Steel Deck Corrugated/Orthotropic/Etc.	1120
Span 1	Beam 1	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 2	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 3	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 4	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 5	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 6	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 7	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 8	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 9	Plate Girder	Steel Open Girder/Beam	40
Span 1	Beam 10	Plate Girder	Steel Open Girder/Beam	40
Span 1	Left Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 1	Right Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 1	Wearing Surface	Asphalt Wearing Surface	Wearing Surface	1134
Span 2	Deck	Steel Deck Corrugated	Steel Deck Corrugated/Orthotropic/Etc.	1120
Span 2	Beam 1	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 2	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 3	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 4	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 5	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 6	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 7	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 8	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 9	Plate Girder	Steel Open Girder/Beam	40
Span 2	Beam 10	Plate Girder	Steel Open Girder/Beam	40
Span 2	Left Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 2	Right Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 2	Wearing Surface	Asphalt Wearing Surface	Wearing Surface	1120
Span 3	Deck	Steel Deck Corrugated	Steel Deck Corrugated/Orthotropic/Etc.	1120
Span 3	Beam 1	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 2	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 3	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 4	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 5	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 6	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 7	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 8	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 9	Plate Girder	Steel Open Girder/Beam	40
Span 3	Beam 10	Plate Girder	Steel Open Girder/Beam	40
Span 3	Left Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 3	Right Bridge Rail	Steel Rail	Metal Bridge Railing	40
Span 3	Wearing Surface	Asphalt Wearing Surface	Wearing Surface	1134
Bent 1	Cap 1	Steel Pier Cap	Steel Pier Cap	34
Bent 1	Pile 1	Steel Pile	Steel Pile	1
Bent 1	Pile 2	Steel Pile	Steel Pile	1

Elements Verfied

Location	Name	Component	Element Name	Amount
Bent 1	Pile 3	Steel Pile	Steel Pile	1
Bent 1	Pile 4	Steel Pile	Steel Pile	1
Bent 1	Pile 5	Steel Pile	Steel Pile	1
Bent 1	Pile 6	Steel Pile	Steel Pile	1
Bent 1	Footing	Reinforced Concrete Footing	Reinforced Concrete Pile Cap/Footing	38
End Bent 1	Steel Cap	Steel Pier Cap	Steel Pier Cap	34
End Bent 1	Concrete Cap	Reinforced Concrete Pier Cap	Reinforced Concrete Pier Cap	48
End Bent 1	Abutment	Reinforced Concrete Abutment	Reinforced Concrete Abutment	60
Bent 2	Cap 1	Steel Pier Cap	Steel Pier Cap	34
Bent 2	Pile 1	Steel Pile	Steel Pile	1
Bent 2	Pile 2	Steel Pile	Steel Pile	1
Bent 2	Pile 3	Steel Pile	Steel Pile	1
Bent 2	Pile 4	Steel Pile	Steel Pile	1
Bent 2	Pile 5	Steel Pile	Steel Pile	1
Bent 2	Pile 6	Steel Pile	Steel Pile	1
Bent 2	Footing	Reinforced Concrete Footing	Reinforced Concrete Pile Cap/Footing	38
End Bent 2	Steel Cap	Steel Pier Cap	Steel Pier Cap	34
End Bent 2	Concrete Cap	Reinforced Concrete Pier Cap	Reinforced Concrete Pier Cap	48
End Bent 2	Abutment	Reinforced Concrete Abutment	Reinforced Concrete Abutment	61

General Inspection Notes

National Bridge and NC Inspection Items

Structure Number: 120320 Inspection Date: 06/28/2022

National Bridge Inventory Items

Item	Grade Scale	Grade	
Item 58: Deck	0 - 9 , N	6	Note:
Item 59: Superstructure	0 - 9 , N	5	Items 58,59,60,62 reflect this
Item 60: Substructure	0 - 9 , N	5	inspection only.
Item 61: Channel and Channel Protection	0 - 9 , N	5	For overall NBI coding grade, see cover sheet.
Item 62: Culvert	0 - 9 , N	N	
Item 71: Waterway Adequacy	0 - 9 , N	7	
Item 72: Approach Roadway Alignment	0 - 9 , N	8	

Note: If NBI Inspection Item is not present, code NBI item with "N"

NC SMU Inspection Items

Item	Grade Scale	Grade	Maint. Qty.	Maint. Code
Deck Debris	G, F, P, or C	F	3360	3376
Drainage System	G, F, P, or C	G	0	3332
Utilities	G, F, P, or C			
Slope Protection	G, F, P, or C	F	160	3352
Scour	G, F, P, or C	F		
Wingwall	G, F, P, or C		0	3350
Field Scour Evaluation		U		
Drift	G, F, P, or C	F	4	3366
Fender System	G, F, P, or C		0	3364
Movable Span Machinery	G, F, P, or C			
Response to Live Load	G, F, P, or C	F		
Superstructure Paint Code		U		

Note: If NC SMU Insepction Item is not present, leave NC SMU item blank

Inspection Information

Item	Grade Scale	Grade
Sign Noticed Issued	YES/NO	N
Priority Maintenance Request Submitted	YES/NO	Υ
Inspection Time	Hours	16
Traffic Control Time	Hours	
Snooper Time	Hours	
Ladder Used	YES/NO	Υ
Bucket Truck Used	YES/NO	N
Boat Used	YES/NO	N
Other Equipment Used	YES/NO	N
Portion of Structure in > 3' of water	YES/NO	N

National Bridge and NC SMU Inspection Item Details

Structure Number: 120320 Inspection Date: 06/28/2022

, I dullic	761. 120020			IIIC	pcon	on Bate. our	
tem	Deck - Item 58	Grade	6	Maint Code	Qty.	0	
Details	GRADING MAINTAINED						
ltem	Superstructure - Item 59	Grade	5	Maint Code	Qty.	0	
Details	GRADING MAINTAINED						
tem	Substructure - Item 60	Grade	5	Maint Code	Qty.	0	
Details	GRADING MAINTAINED						
tem	Channel and Channel Protection - Item 61	Grade	5	Maint Code	Qty.	0	
Details	UPSTREAM AND DOWNSTREAM OF THE STRUCTUR AND SLOUGHING UP TO 10' HIGH	RE THER	E IS LOSS	OF VEGETATION WITH	H EXP	OSED ROOTS	
tem	Field Scour Evaluation	Grade	U	Maint Code	Qty.	0	
Details	SEE SLOPE PROTECTION NOTES						
tem	Deck Debris	Grade	F	Maint Code 3376	Qty.	3360	
Details	RIGHT AND LEFT GUTTERLINES, DEBRIS ACCUMUL	ATION A	LONG THE	LENGTHS			
tem	Slope Protection	Grade	F	Maint Code 3352	Qty.	160	
Details	[MUNICIPAL PROMPT ACTION REQUEST] AT ABUTMENT 1 IN THE TOP OF THE SLOPE, RIGHT & LEFT SIDES, SCATTERED EROSION [APPROXIMATELY 160 SQUARE FEET TOTAL X UP TO 1.25' DEEP]						
	[MUNICIPAL PROMPT ACTION REQUEST] NORTHEA: REACHING AS CLOSE AS 4' FROM THE EDGE OF PA TO 10' HIGH]						
tem	Response to live load	Grade	F	Maint Code	Qty.	0	
Details	REBOUNDING NOTED UNDER LIVE LOADING						
tem	Drift	Grade	F	Maint Code 3366	Qty.	4	
Details	AT BENT 1, APPROXIMATELY 1 CUBIC YARD OF DRI	FT HAS	COLLECTE	ED AGAINST THE PILES	S		
tem	Scour	Grade	F	Maint Code	Qty.	0	

End Bent 1 Concrete Cap 1: 31" X 7" X 1 1/2" DEEP SPALL IN TOP OF CAP BENEATH BEAM 1

End Bent 1 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] NORTH FACE IN THE THIRD WEB STIFFENER, LOWER 3", CORROSION WITH SECTION LOSS [AVERAGE 1/8" REMAINING].

End Bent 1 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] NORTH FACE IN THE LOWER 3" OF WEB STIFFENERS 4-9, CORROSION WITH 100% SECTION LOSS.

End Bent 1 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] NORTH TOP FLANGE EAST OF BEAM 7, CORROSION WITH SECTION LOSS (0.28" AVERAGE REMAINING X 18" X 5")

End Bent 1 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] NORTH TOP FLANGE EAST OF BEAM 8, CORROSION WITH SECTION LOSS (0.28" AVERAGE REMAINING X 1.5' X 4")

End Bent 1 Abutment: [MUNICIPAL PROMPT ACTION REQUEST] SOUTHEAST WINGWALL ADJACENT TO CURB, SPALL (2.5' X 1.5' X 3" DEEP) WITH EXPOSED RUSTED REBAR. THE CONCRETE SHOWS SIGNS OF ALKALAI SILICA REACTION.

End Bent 1 Abutment: [MUNICIPAL PROMPT ACTION REQUEST] SOUTHEAST WINGWALL ADJACENT TO CURB, SPALL (2.5' X 1.5' X 3" DEEP) WITH EXPOSED RUSTED REBAR. THE CONCRETE SHOWS SIGNS OF ALKALAI SILICA REACTION.

End Bent 1 Abutment: southwest wingwall adjacent to deck, spall (9" x 7" x 2.5" deep)

End Bent 2 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap in bays 3 and 4, corrosion with section loss: top flange (3/16" average remaining x 5.5' x 5"); lower web (7/16" average remaining x 4' x up to 2.5"); bottom flange (7/16" average remaining x 4.5'); web stiffeners (as little as 0.22" average remaining x 5" x up to full height)

End Bent 2 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap between bays 5 and 6, corrosion with section loss: top flange (1/4" average remaining x 5.5' x 5"); lower web (7/16" average remaining x 6' x up to full height) bottom flange (7/16" average remaining x 5'); web stiffeners (as little as 0.22" average remaining x 5" x full height)

End Bent 2 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face of cap below beam 8, corrosion with section loss: top flange (0.29" average remaining x 18" x 5"); upper web (7/16" average remaining x 6" x 2.5"); web stiffener (0.25" average remaining x 5" x 1")

End Bent 2 Steel Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face, web stiffener below beam 9, corrosion with section loss (0.20" average remaining x 4" x 5")

End Bent 2 Concrete Cap 1: concrete cap below beam 10, vertical cracks (up to 3/16" x full height) with efflorescence buildup

End Bent 2 Concrete Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] west end of concrete cap, fracture (1' long x full width) undermining steel cap (1' long x 2" high x 1' deep)

Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face below beam 2, corrosion with section loss: bottom flange (0.35" average remaining x 2') top flange (0.42" average remaining x 1'); lower web (7/16" average remaining x 5" x 2"); web stiffener (3/16" average remaining x 5" x 2")

Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south face below bay 3, corrosion with section loss: bottom flange (1/4" average remaining x 39"); lower web (7/16" average remaining x 39" x 2"); web stiffeners (as little as 3/16" average remaining x 5" x 2.5")

Bent 1 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] south and north faces below bays 7 through 9, corrosion with section loss: bottom flange (5/16" average remaining x 8.5'); lower web (7/16" average remaining x 8' x 2"); web stiffeners (as little as 0.15" average remaining x 5" x up to 5")

Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below bay 7, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 3.5'); top flange (0.35" average remaining x 5.5" x 3.5'); lower web (less than 1/16" loss x 3.5' x 2"); web stiffeners (less than 1/16" loss x 5" x 2")

Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below bays 4 through 6, corrosion with section loss: bottom flange (0.33" average remaining x 5.5" x 9'); lower web (less than 1/16" loss x 9' x 2"); web stiffeners in the lower 2", average 3/16" remains.

Bent 2 Cap 1: [MUNICIPAL PROMPT ACTION REQUEST] north face below beam 3, corrosion with section loss: bottom flange (0.35" average remaining x 5.5" x 5'); lower web (0.43" average remaining x 3' x 2.5")

[MUNICIPAL PROMPT ACTION REQUEST] NORTHEAST CORNER IN THE FILL SLOPE, EROSION IS PRESENT, REACHING AS CLOSE AS 4' FROM THE EDGE OF PAVEMENT [APPROXIMATELY 40' LONG X UP TO 10' WIDE X UP TO 10' HIGH]

[MUNICIPAL PROMPT ACTION REQUEST] NORTHEAST CORNER IN THE FILL SLOPE, EROSION IS PRESENT, REACHING AS CLOSE AS 4' FROM THE EDGE OF PAVEMENT [APPROXIMATELY 40' LONG X UP TO 10' WIDE X UP TO 10' HIGH]

Span 1 Beam 1: [MUNICIPAL PROMPT ACTION REQUEST] at end bent 1, east face, corrosion with section loss: bottom flange (0.47" average remaining x 15"); lower web (1/4" average remaining x 27" x 2")

Span 1 Beam 2: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BRT OTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (1/4" AVERAGE REMAINING X 4' X UP TO 4") ; LEFT BOTTOM FLANGE CORROSION [AVERAGE 1/4" REMAINING] WITH KNIFE EDGING FOR 3' LONG.

Span 1 Beam 3: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (1/4" REMAINING FOR 1.5' LONG, THEN 0.45" AVERAGE REMAINING FOR NEXT 2' LONG); LOWER WEB (1/4" AVERAGE REMAINING X 4' X 3")

Span 1 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: LEFT BOTTOM FLANGE (0.47" AVERAGE REMAINING X 50"), RIGHT BOTTOM FLANGE (1/4" AVERAGE REMAINING FOR 1.5' LONG, THEN 0.47" AVERAGE REMAINING FOR NEXT 2.5' LONG); LOWER WEB (1/4" AVERAGE REMAINING X 4' X UP TO 4")

Span 1 Beam 5: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (AVERAGE 1/4" REMAINING FOR 1.5' LONG, THEN 0.40" AVERAGE REMAINING FOR NEXT 1.5' LONG'); LOWER WEB (3/16" AVERAGE REMAINING X 2.5' X UP TO 3.5")

Span 1 Beam 6: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.35" AVERAGE REMAINING X 3'); LOWER WEB (3/16" AVERAGE REMAINING X 3' X UP TO 4") WITH RUST HOLE (12" X 1.5")

Span 1 Beam 7: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 4.5' X UP TO 4" WITH 1" DIAMETER CORROSION HOLE AT 1' OUT).

Span 1 Beam 8: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.40" AVERAGE REMAINING X 4'); LOWER WEB (3/16" AVERAGE REMAINING X 4' X UP TO 4") WITH RUST HOLE (16" X 3").

Span 1 Beam 9: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 2"); LOWER WEB (1/4" AVERAGE REMAINING X 20" X 2.5")

Span 1 Beam 10: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 1, WEST FACE, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.37" AVERAGE REMAINING X 2.5'); LOWER WEB (5/16" AVERAGE REMAINING X 3' X UP TO 4"); TOP FLANGE (0.38" AVERAGE REMAINING X 5')

Span 1 Left Bridge Rail: [MUNICIPAL PROMPT ACTION REQUEST] AT FIFTH POST CONNECTION TO BEAM 1, (1) MISSING CONNECTION BOLT

Span 3 Beam 3: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.38" AVERAGE REMAINING X 4.5'); LOWER WEB (1/4" AVERAGE REMAINING X 5' X UP TO 3")

Span 3 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.45" AVERAGE REMAINING X 3.5'); LOWER WEB (1/4" AVERAGE REMAINING X 3.5' X UP TO 4").

Span 3 Beam 5: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (3/8" AVERAGE REMAINING X 3'); LOWER WEB (3/16" AVERAGE REMAINING X 3.5' X UP TO 3")

Span 3 Beam 6: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.35" AVERAGE REMAINING X 6'); LOWER WEB (3/16" AVERAGE REMAINING X 6' X UP TO 4")

Span 3 Beam 7: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.42" AVERAGE REMAINING X UP TO 5.5'); LOWER WEB (3/16" AVERAGE REMAINING X 5.5' X UP TO 4")

Span 3 Beam 8: [MUNICIPAL PROMPT ACTION REQUEST] AT END BENT 2, CORROSION WITH SECTION LOSS: BOTTOM FLANGE (0.375" AVERAGE REMAINING X UP TO 4'); LOWER WEB (1/8" AVERAGE REMAINING X 3" X UP TO 6" LONG WITH PERFORATIONS, THEN 3/16" REMAINING IN LOWER 3" OF THE WEB FOR THE NEXT 3.5' LONG)

Span 1 Beam 4: [MUNICIPAL PROMPT ACTION REQUEST] at bent 1, top flange, corrosion with section loss (0.38" average remaining x 2')

Span 1 Wearing Surface: throughout wearing surface, map cracks (up to 1/2" x full width of roadway x full length)

Span 1 Wearing Surface: at end bent 1, separation/ crack (1" x full width of roadway)

Span 1 Wearing Surface: at southbound lane, 2' from end bent 1, area of breaking up asphalt (14.5' x 6" x 1" deep)

RIGHT AND LEFT GUTTERLINES, DEBRIS ACCUMULATION ALONG THE LENGTHS

Span 1 Wearing Surface: [NEW REPAIR - ASPHALT PATCHING] FORMERLY --> at southbound lane adjacent to bent 1, patched area (4.5' x 4') with cracks (up to 1/8") and potholes (up to 2" x 3" x 1" deep)

Span 2 Wearing Surface: at northbound lane near midspan, patched area (45" x 2') with cracks (up to 1/32")

Span 3 Left Bridge Rail: left bridge rail at 18' from end bent 2, impact damage (2')

End Bent 2 Abutment: northwest wingwall adjacent to beam 1, spall/ delamination (3' x 2.5' x up to 2" deep) with cracks (up to 1/4") with efflorescence buildup

AT BENT 1, APPROXIMATELY 1 CUBIC YARD OF DRIFT HAS COLLECTED AGAINST THE PILES

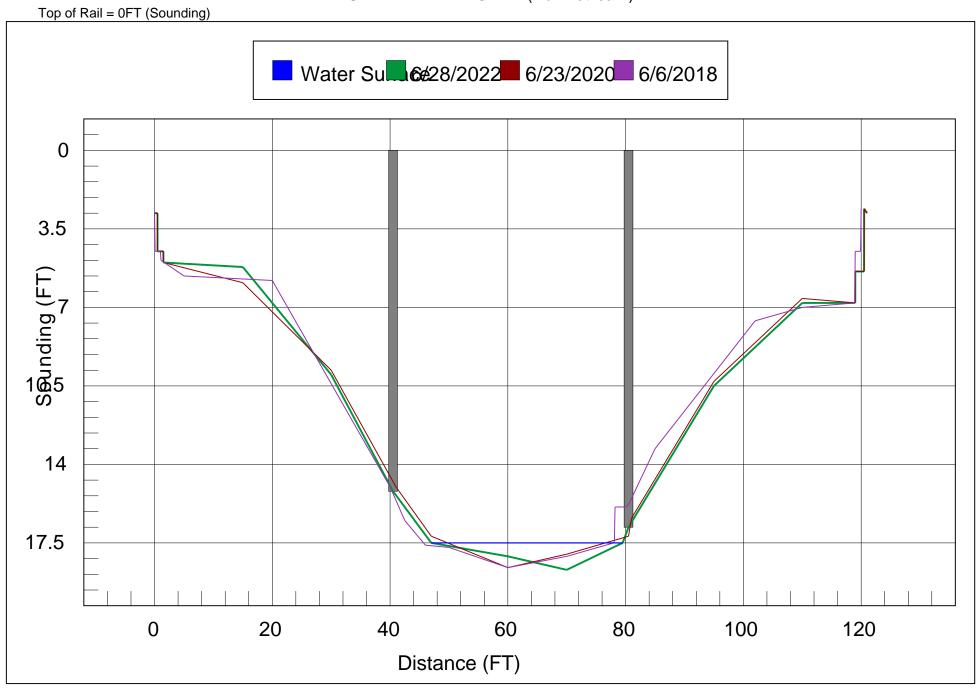
UPSTREAM AND DOWNSTREAM OF THE STRUCTURE THERE IS LOSS OF VEGETATION WITH EXPOSED ROOTS AND SLOUGHING UP TO 10' HIGH

[MUNICIPAL PROMPT ACTION REQUEST] AT ABUTMENT 1 IN THE TOP OF THE SLOPE, RIGHT & LEFT SIDES, SCATTERED EROSION [APPROXIMATELY 160 SQUARE FEET TOTAL X UP TO 1.25' DEEP]

[MUNICIPAL PROMPT ACTION REQUEST] AT ABUTMENT 1 IN THE TOP OF THE SLOPE, RIGHT & LEFT SIDES, SCATTERED EROSION [APPROXIMATELY 160 SQUARE FEET TOTAL X UP TO 1.25' DEEP]

Stream Bed Soundings (Profile diagram on following sheet)

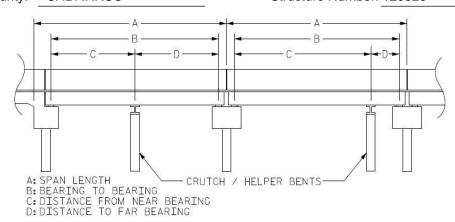
County CABARRUS Structure Number: 120320 Inspection Date 06/28/2022


Sounding recorded from: Top of Bridge Rail

Highwater Mark Distance 6 Location of Highwater Mark DEBRIS ON BANK

Distance (Station) ft.	Downstream Sounding ft.	Upstream Sounding ft.	Description
0.000	2.800	0.000	TOP OF WALL
0.500	2.800	0.000	TOP OF WALL
0.510	4.500	0.000	RAIL TO CAP
1.500	4.500	0.000	RAIL TO CAP
1.510	5.000	5.800	GROUND AT CAP
15.000	5.200	0.000	SLOPE
30.000	10.000	0.000	SLOPE
40.500	15.200	16.600	BENT 1
47.000	17.500	0.000	WSWE
60.000	18.100	0.000	SOUNDING
70.000	18.700	0.000	SOUNDING
79.500	17.500	0.000	WSWE
80.500	16.800	16.200	BENT 2
95.000	10.500	0.000	SLOPE
110.000	6.800	0.000	SLOPE
119.000	6.800	5.800	GROUND AT CAP
119.010	5.400	0.000	RAIL TO CAP
120.500	5.400	0.000	RAIL TO CAP
120.510	2.600	0.000	TOP OF WALL
121.000	2.800	0.000	TOP OF WALL

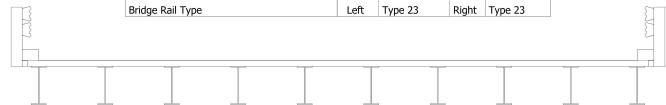
Bridge: 120320 County: CABARRUS Date: 06/28/2022


STREAMBED PROFILE (Downstream)

Structure Data Worksheet

Span Profile

County: CABARRUS Structure Number: 120320

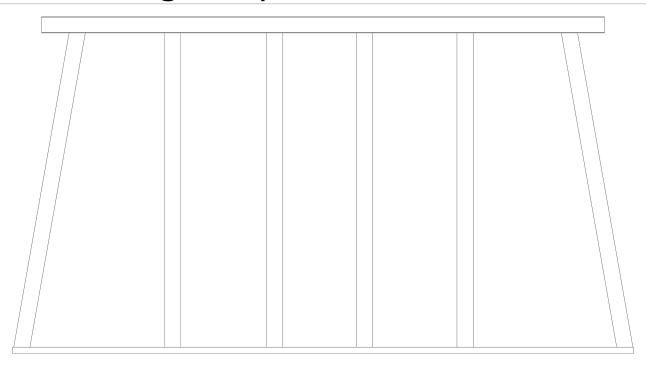

Span Number	Span Length	Bearing to Bearing	Crutch/ Helper Bent	Distance to Near Bearing	Distance to Far Bearing
1	40.500	39.333			
2	40.000	39.333			
3	40.500	39.333			

Roadway	23.5ft Wide	2 Paved Lanes	Looking North
Left Shoulder	6ft Wide	2ft Paved	4ft Unpaved
Right Shoulder	4ft Wide		4ft Unpaved
Left Guardrail			·
Right Guardrail			

MEASUREMENTS TAKEN APPROXIMATELY 300' SOUTH OF ABUTMENT 1

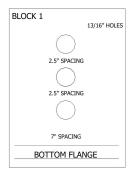
Title SOUTH APPROACH ROADWAY			Descriptio TYPICAL		ION		
Structure No: 120320	Drawn By:	ERIC A. PATTERSON		Date:	6/28/2022	Filename:	S001338000064.wes

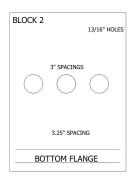
Deck Width/Out to Out	k Width/Out to Out 28.00ft Between Rails					
Clear Roadway	28ft	Wearin	g Surface			
Median Width		Median	Height			
Curb Height	Left	5in	Right	5in		
Sidewalk Width		Left		Right		
Clear Roadway (Rail to Median	1)	Left		Right		
Guardrail Width	Left	9in	Right	9in		
Top of Rail to Deck/Wearing Surface			2.417ft	Right	2.4	17ft
Bridge Rail Type	Left	Type 23	Right	Тур	e 23	

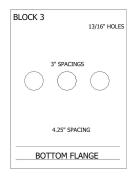


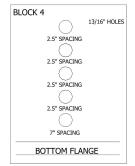
Measurements for Span #	1	ALL SPANS SIMILAR	
Deck Thickness	3in	Left Overhang	0.5ft
Top of Rail to Bottom of Beam (Avg)	4.396ft	Right Overhang	0.5ft

Beam #	Beam Type	Width	Height	Spacing	From
1	Plate Girder	8.25in	20.75in	0.5ft	Left Edge of Deck
2	Plate Girder	8.25in	20.75in	3ft	Beam 1
3	Plate Girder	8.25in	20.75in	3ft	Beam 2
4	Plate Girder	8.25in	20.75in	3ft	Beam 3
5	Plate Girder	8.25in	20.75in	3ft	Beam 4
6	Plate Girder	8.25in	20.75in	3ft	Beam 5
7	Plate Girder	8.25in	20.75in	3ft	Beam 6
8	Plate Girder	8.25in	20.75in	3ft	Beam 7
9	Plate Girder	8.25in	20.75in	3ft	Beam 8
10	Plate Girder	8.25in	20.75in	3ft	Beam 9


FLANGE THICKNESS = 1/2" WEB THICKNESS = 3/8"


Title SUPERSTRUCTURE			Description TYPICAL S	SECTI	ON			
Structure No: 120320	Drawn By:	ERIC A. PATTERSON	D	Date:	6/28/2022	Filename:	S001338000065.wes	




Ca	aps											
#	Name	Туре		L	ength	Width	Height		Left Beam to End of Cap		Right Beam to End of C	
1	Cap 1	Steel	Pier Cap	3-	4ft	12in	12in		1.417ft		1.417ft	
Pi	iles											
#	Name		Туре		Spacin	g Fi	om			Height/Diam	. Width	Length
1	Pile 1		Steel Pile		1.5ft	Le	Left End of Bent		•	11.746in	11.746in	14ft
2	Pile 2		Steel Pile		6.417ft	t Pile 1			11.746in	11.746in	14ft	
3	Pile 3		Steel Pile		6.167ff	: Pi	le 2			11.746in	11.746in	14ft
4	Pile 4		Steel Pile	5.4171		: Pi	Pile 3			11.746in	11.746in	14ft
5	Pile 5		Steel Pile		6.083ff	: Pi	le 4			11.746in	11.746in	14ft
6	Pile 6		Steel Pile		6.75ft Pile 5			11.746in	11.746in	14ft		
Fc	ootings											
#	Name			Туре						Length	Width	Height
1	Footing 1			Reinforced Concrete Footing				37.5ft	2.25ft	2ft		

Title SUBSTRUCTURE - INTERIOR E	BENTS		Descriptio TYPICAL		PROFILE		
Structure No: 120320	Drawn By:	ERIC A. PATTERSON		Date:	6/28/2022	Filename:	S001338000066.wes

SPAN 1 MEASUREMENTS FROM BENT 1

 ${\sf SPAN~1,~BEAMS~2-4~\&~8-10:~BLOCK~1~AT~0.167',~13.85',~\&~28.67';~BLOCK~3~AT~0.167',~14.51',~\&~39.37'}$

SPAN 1, BEAMS 1 & 5-7: BLOCK 1 AT 0.167', 13.85', 27.35' & 28.68'; BLOCK 2 AT 15.22', 15.55', & 28.47'; BLOCK 4 AT 30.8'; SINGLE HOLE AT 1' UP, 5.5' OC BEG AT 0.167' OUT

SPAN 2 MEASUREMENTS FROM BENT 2

SPAN 2, BEAMS 2-4, 6, 8, & 9: BLOCK 2 AT 0.167', & 28.47'; BLOCK 4 AT 39.37'; SINGLE HOLE AT 1' UP, 5.5' OC BEG AT 0.167' OUT

SPAN 2, BEAMS 5&7: BLOCK 1 AT 13.85' & 27.5'; BLOCK 2 AT 0.167', 13.5' & 28' [BOTH 7.25" UP], & 39.37'; BLOCK 4 AT 0.167'; SINGLE HOLE AT 1' UP AT 0.417' OUT

SPAN 2, BEAM 10: BLOCK 1 AT 0.33', 0.67', 15', 15.33', 26.8', 27.13', 38.96', 39.21', & 39.5'; BLOCK 3 AT 0.917', 14, 27.67', & 38.17'; SINGLE HOLE AT 1' UP AT 0.917' & 14.15' OUT

SPAN 3 MEASUREMENTS FROM END BENT 2

SPAN 3, BEAMS 1,3, 4 & 6-8: BLOCK 1 AT 16.55', 16.88', 29.9', & 30.2'; BLOCK 3 AT 0.167', 15.8', 30.5', & 39.37'; BLOCK 4 AT 0.25' & 39.75' SPAN 3, BEAMS 2, 5, 9, & 10: BLOCK 1 AT 0.5', 0.8', 39.17' & 39.5'; BLOCK 3 AT 12.5, 27.5', & 38.17'; SINGLE HOLE AT 1' UP AT 27.75' OUT

Title SALVAGE BEAMS			Descriptio DETAILS				
Structure No: 120320	Drawn By:	ERIC A. PATTERSON		Date:	6/28/2022	Filename:	S001338000067.wes

Structure: 120320 County: CABARRUS Date: 06/28/2022 Structure Photos

APPROXIMATELY 1/2 MILE SOUTH OF ABUT MENT 1, ADVANCE WARNING POSTING

BENT 1 LOOKING NORTH [BENT 2 SIMILAR]

Structure: 120320 County: CABARRUS Date: 06/28/2022 Structure Photos

APPROXIMATELY 500' NORTH OF ABUTMENT 2, POSTING

APPROXIMATELY 500' SOUTH OF THE STRUCTURE, POSTING

Structure: 120320 County: CABARRUS Date: 06/28/2022 Structure Photos

SOUTH APPROACH LOOKING NORTH

UPSTREAM VIEW, LOOKING WEST

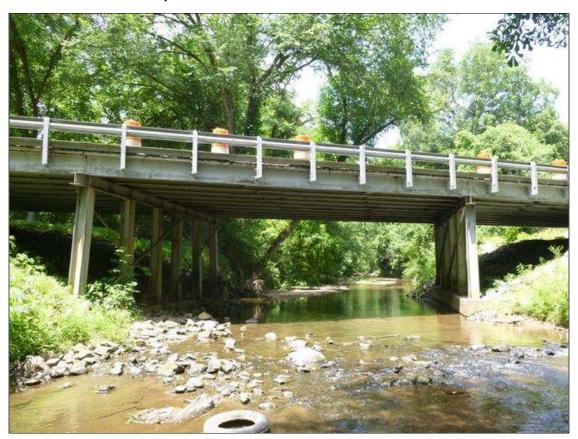
FROM THE DECK, LOOKING SOUTH

FROM THE DECK, LOOKING NORTH

DOWNSTREAM VIEW, LOOKING EAST

NORTH APPROACH LOOKING SOUTH

ABUTMENT 2, LOOKING NORTH


UPSTREAM, LOOKING EAST

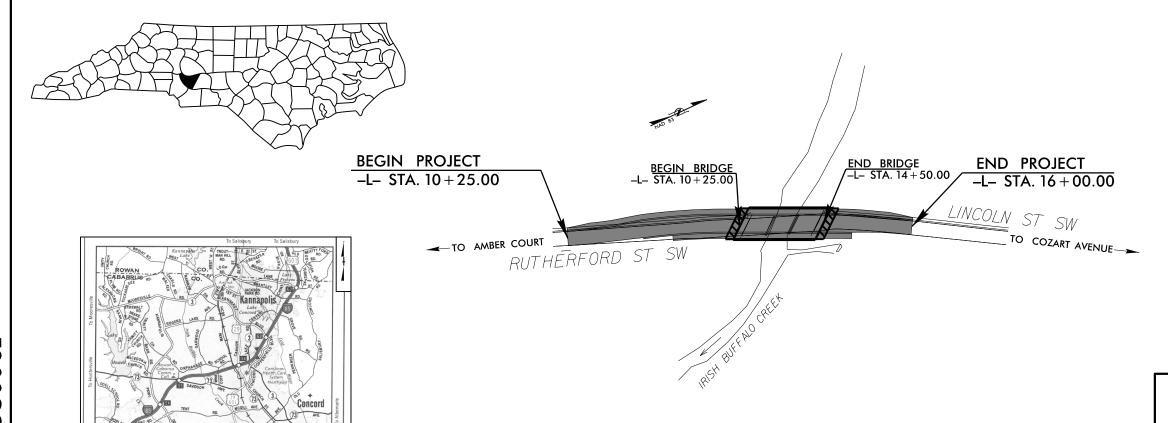
ABUTMENT 1, LOOKING SOUTH

SPAN 2 LOOKING NORTH [ALL SPANS SIMILAR]

DOWNSTREAM, LOOKING WEST

STATE	PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	22350061	1	33

CITY OF CONCORD NORTH CAROLINA


CONTENTS

SHEET NO.	DESCRIPTION
1	TITLE SHEET
2	LEGEND (SOIL & ROCK)
3	SITE PLAN
4	PROFILE
5-8	CROSS SECTIONS
9-13	BORE LOGS AND CORE LOGS
14-16	CORE PHOTOS
17	SOIL TEST RESULTS
18-32	CONSOLIDATION TEST RESULTS
33	SITE PHOTO

VICINITY MAP

STRUCTURE SUBSURFACE INVESTIGATION

STATE NORTH CAROLINA COUNTY CABARRUS PROJECT DESCRIPTION REPLACE BRIDGE NO. 120320 ON LINCOLN STREET SW OVER IRISH BUFFALO **CREEK**

PERSONNEL

J. SWARTLEY

M. HARTMAN J. LITTLE

D. WEBER

INVESTIGATED BY _S&ME, Inc.

DRAWN BY J. SWARTLEY

CHECKED BY J. DAILY

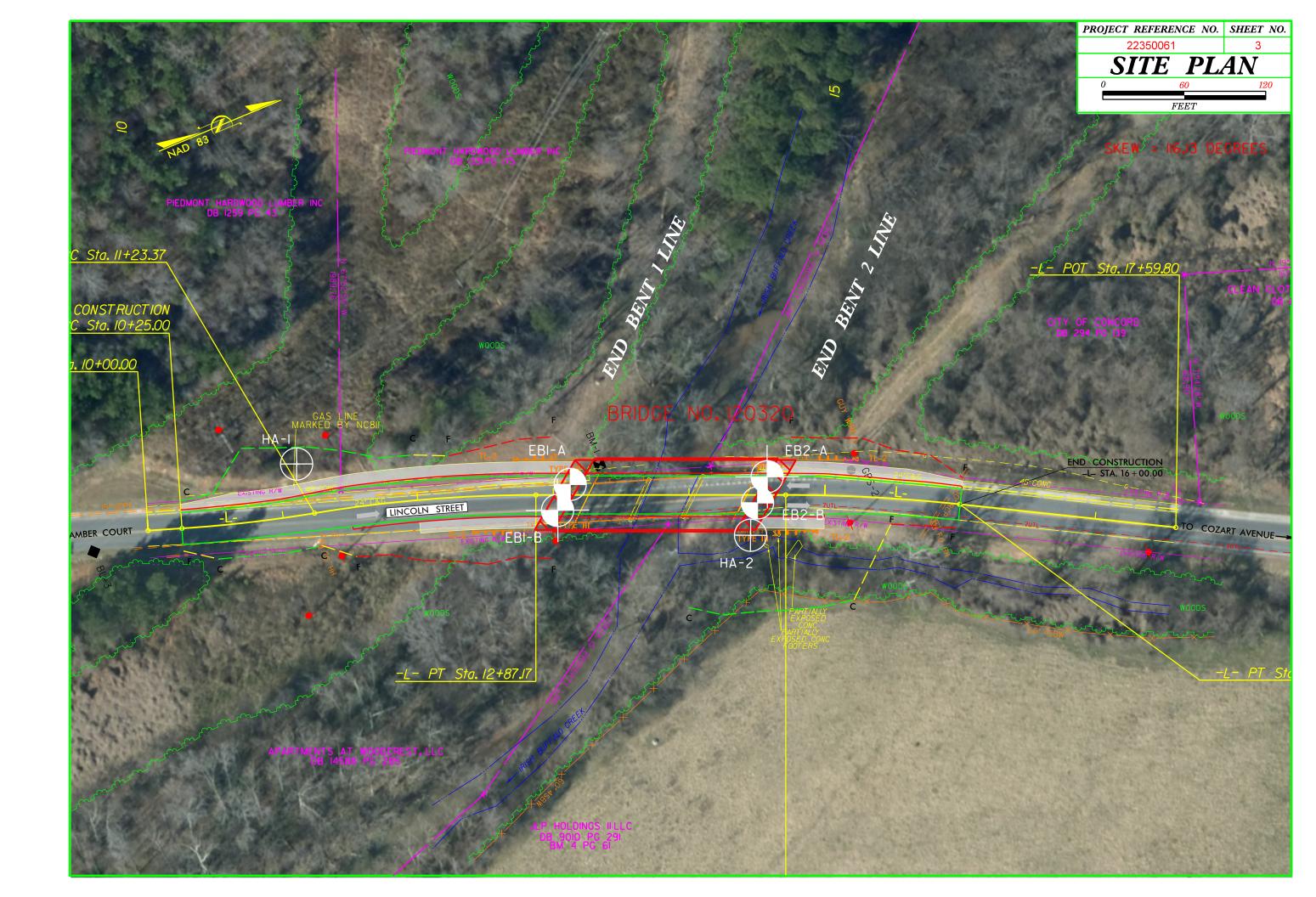
SUBMITTED BY S&ME, Inc.

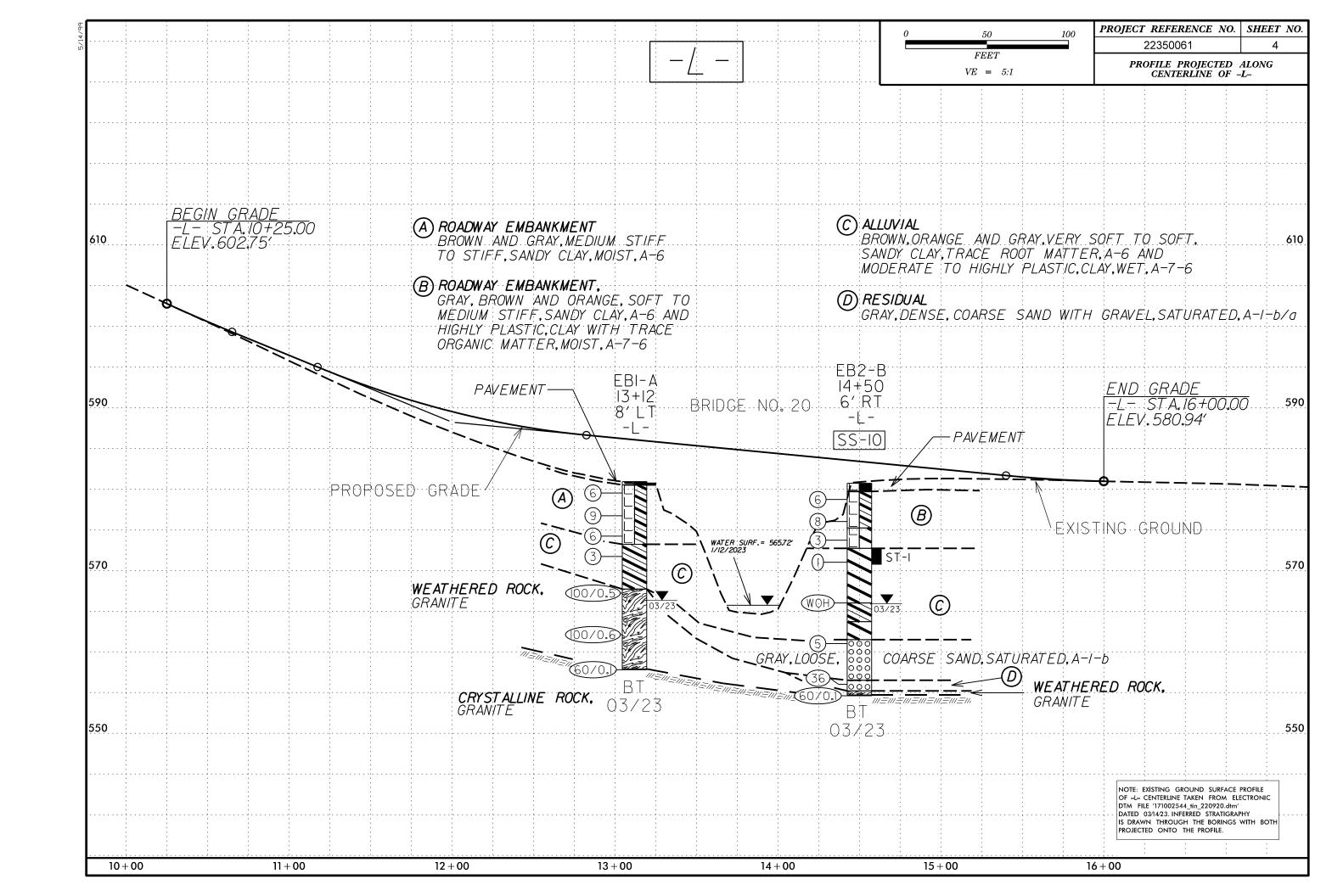
DATE **JUNE** 2023

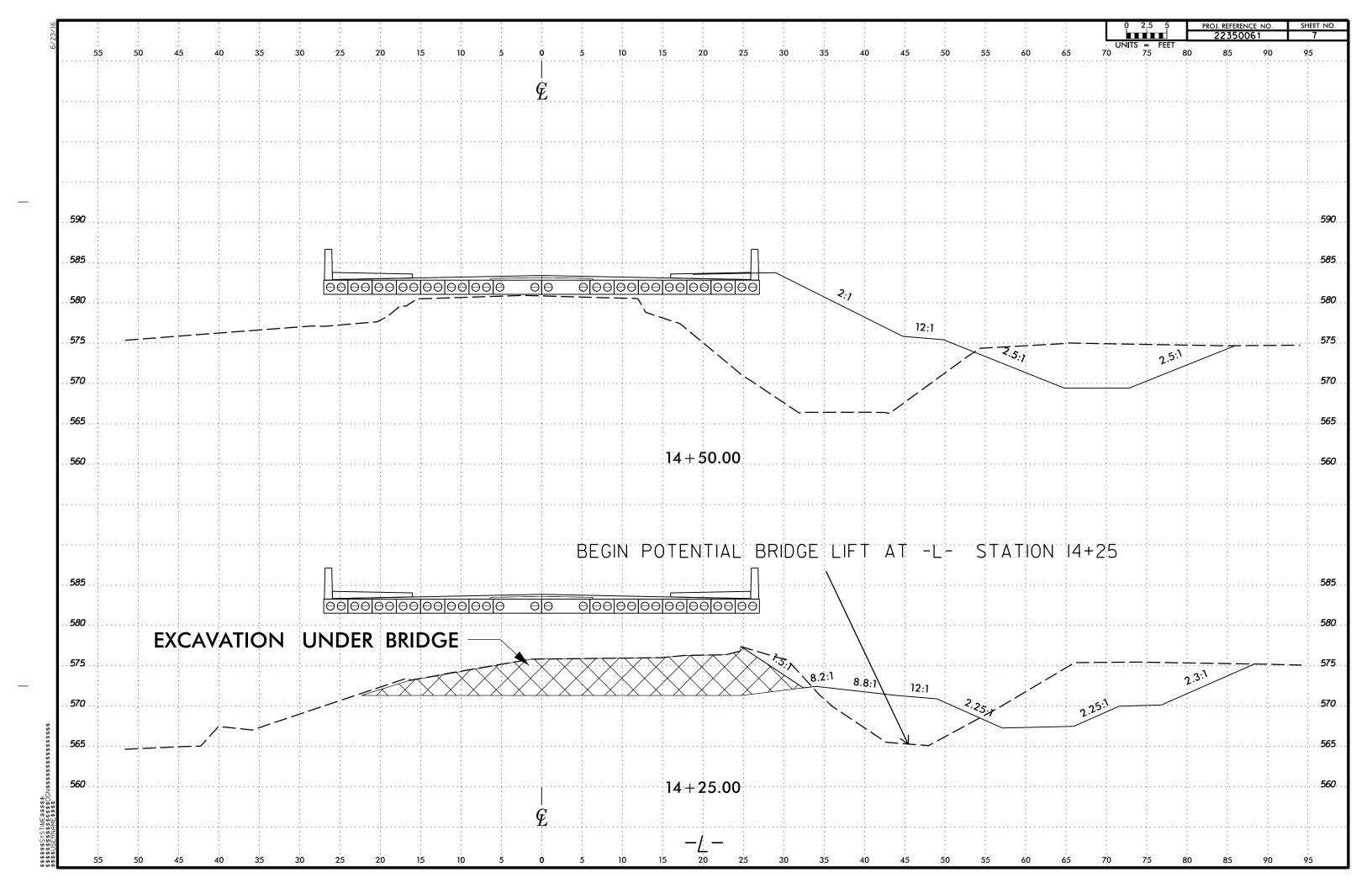
9751 SOUTHERN PINE BLVD CHARLOTTE, NC 28273 (704) 523-4726

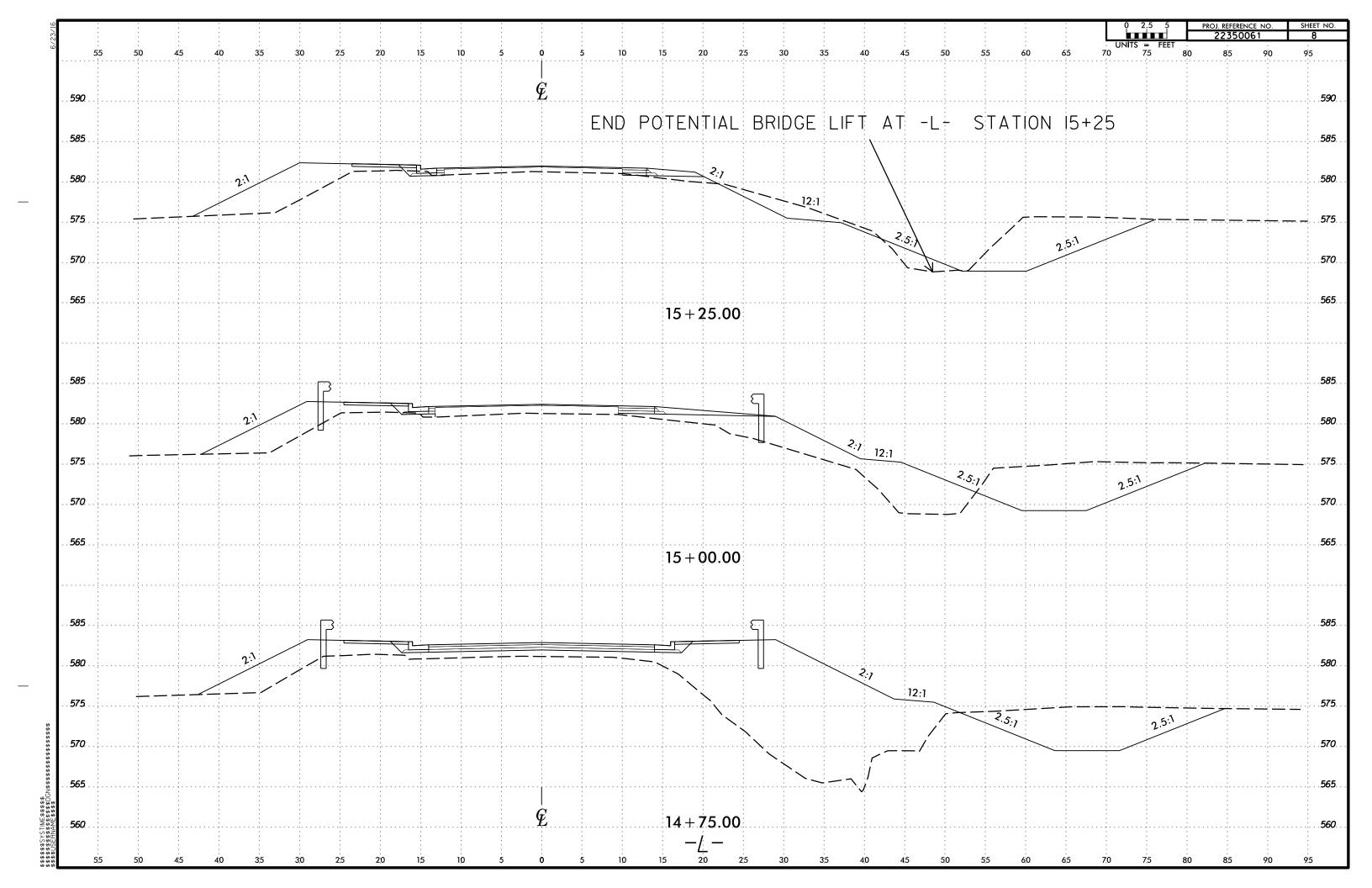
SIGNATURE

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


22350061


PROJECT REFERENCE NO.	SHEET NO.
22350061	2


SUBSURFA EE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	USCS SOIL CLASSIFICATION
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLOHT POWER AUGUR AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO 1 206, ASTM D1586). SOIL CLASSIFICATION. ASTM D1586. SOIL CLASSIFICATION. AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTUBE, PLASTICITY, ETC., FOR EXAMPLE, VERY STIFF, GRAY, SLIY CLAW, MOST WITH IMPREADED FINE SAM DEFER. SHAND LEFT. SHANDLE, A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION. AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTUBE, PLASTICITY, ETC., FOR EXAMPLE, VERY STIFF, GRAY, SLIY CLAW, MOST WITH IMPREADED FINE SAM DEFER. SHAND LEFT. SHANDLE, PLASTIC, A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OF ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERAL OGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBLE COMPRESSIBLE LL = 31 - 50 LL > 50 EVERCENTAGE OF MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL SOILS SOILS SOILS SOILS SOILS TRACE 0 ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% MODERATELY ORGANIC 5 - 10% 12 - 20% MODERATELY ORGANIC 5 - 10% 2 - 20% HIGHLY ORGANIC 5 - 10% 12 - 20% WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING STATIC WATER LEVEL AFTER 24 HOURS PPW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PW. PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA OF ROCK STRUCTURES SOIL SYMBOL SOIL SYMBOL SOIL SYMBOL SOIL SYMBOL SOLD STRUCTURES SOLD SYMBOL SOLD STRUCTURES SOLD STRUCT	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE NIDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOUL YIELD SPT REFUSAL, SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL, THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED. NON-COASTAL PLAIN MOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES CRANITE, GREEN, CRYSTALLINE ROCK (CR) NON-CRYSTALLINE SEDIMENTARY ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GREEN, CRYSTALL PLAIN SEDIMENTARY ROCK THAT WOULD VIELD SPT REFUSAL IF TESTED. ROCK BY INCLUDES CRANITE, GREEN, CRYSTALL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL, ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, CEMENTED SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SPT REFUSAL, ROCK GREALLY FRESH, JOINTS STAINED, SOME SHOW THIN CLAY TORK HAS DURING THE ADDITION OF ROCK SURVEY SHOWS SEVER LOSS OF STRENGTH AND DISCOLORED COR	USCS SUIL CLASSIFICATION GW - WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES GP - POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES GM - SILTY GRAVELS, GRAVEL-SAND-CLAY MIXTURES GC - CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES SW - WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES SP - POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES SM - SILTY SANDS, SAND-SILT MIXTURES ML - INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY CL - INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS OL - ORGANIC SILTS AND ORGANIC CLAYS OF LOW PLASTICITY MH - INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS, ELASTIC SILTS CH - INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS OH - ORGANIC SILTS AND ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY
GRANULAR	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	IF TESTED, WOULD YIELD SPT N VALUES > 180 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	
VERY SOFT < 2 < 0.25	── INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	TERMS AND DEFINITIONS
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SUFFACE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 2.00 0.42 0.25 0.075 0.053 BOULDER (BLDR.) COBBLE (COB.) GRAVEL (GR.) CES. SD.) SAND (CSE. SD.) (F SD.) (SL.) (CL.) GRAIN MM 305 75 2.0 0.25 0.05 0.005	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE SHALLOW UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE UNCLASSIFIED EXCAVATION - BEFORE TO BEFORE TO BE UNDERCUT ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
SIZE IN. 12 3		BY MODERATE BLOWS.	FIELD. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE PLASTIC COMPOSITOR DESCRIPTION COMPOSITOR DESCRIPTION	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	FIELD. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE PLASTIC PLAST	BT - BORING TERMINATED MICA - MICACEOUS CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAMPLE ABBREVIATIONS SP SAPROLITIC S - BULK S - SPLIT SPOON F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SL SILT, SILTY FRACS FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	MEDIUM HARD CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING BEDDING	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SECMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS IN OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE PLASTIC PLAST	BT - BORING TERMINATED MICA - MICACEOUS CL - CLAY OPT - CONE PENETRATION TEST NP - NON PLASTIC ORG ORGANIC DHT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST PM - PRESSUREMETER TEST DPT - DYNAMIC PENETRATION TEST SD SAND, SANDY F - FINE SL - SILT, SILTY FOSS FOSSILIFEROUS SLI - SLIGHTLY FRACL - FRACTURED, FRACTURES TCR - TRICONE REFUSAL WEA WEATHERED Young To Will WEIGHT SAMPLE ABBREVIATIONS SAMULE ABBREVIATIONS S - BULK ST - SHELBY TUBE FOSS FOSSILIFEROUS FRACL - FRACTURED, FRACTURES TCR - TRICONE REFUSAL TRICONE REFUSAL TRICONE REFUSAL TRICONE REFUSAL	MEDIUM HARD CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE LIQUID LIMIT - WET - (W) SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE SL OPTIMUM MOISTURE SHRINKAGE LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY OF - CONE PENETRATION TEST OF - ONO PLASTIC OF - ORGANIC DMT - DILATOMETER TEST DMT - DYNAMIC PENETRATION TEST OF - OYNAMIC PENETRATION TEST E - VOID RATIO F - FINE SL SILT, SILTY F - SP SAPROLITIC SS SOURS SL SIL, SILTY F - SHELBY TUBE FOSS FOSSILIFEROUS FRACT FRACTURED, FRACTURES FRAGS FRAGMENTS HIL - HIGHLY DRILL UNITS: DOYANCING TOOLS: CME - 45C CME - 55 MICA MICACEOUS WEA WEATHERD Y - WID ROTH OF AND PLASTIC OF YUNIT WEIGHT S - BULK S - BULK S - BULK S - BULK S - SILT SELDY ST - SHELBY TUBE RS - ROCK RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING RATIO CBR - CALIFORNIA BEARING RATIO CME - 45C CME - 55 CORE SIZE:	MEDIUM HARD CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET WIDE A TO IS FEET WIDE A TO IS FEET WIDE A TO IS FEET THICKLY BEDDED A FEET CLOSE A 16 TO 1 FOOT VERY THINLY BEDDED A 0.03 FEET THICKLY LAMINATED VERY THINLY LAMINATED VERY THINLY LAMINATED VERY BEDDED A 0.03 FEET THICKLY LAMINATED VERY THINLY LAMINATED VERY BEDDED A 0.03 FEET THICKLY LAMINATED VERY THINLY LAMINATED VERY BEDDED A 0.03 FEET THICKLY LAMINATED VERY THINLY LAMINATED VERY CLOSE THINLY LAMINATED VER	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: NAIL IN BASE OF 20° SYCAMORE N: 600563 E: 1528755 ELEVATION: 577.740 FEET

								_	UKE L					
WBS	N/A				TI	P N/A		COUNT	Y CABARE	RUS			GEOLOGIST Hartman, M.	
SITE	DESCR	IPTION	BRI	DGE N	10. 20	ON LINCO	DLN STREE	ET (-L-) O\	/ER IRISH E	BUFFALC	CRE	ΞK		GROUND WTR (
BORI	NG NO.	EB1-	A		S	TATION	13+12		OFFSET	8 ft LT			ALIGNMENT -L-	0 HR . N
COLL	LAR ELI	EV . 58	0.9 ft		TO	OTAL DEP	TH 23.11	ft	NORTHING	600,5	37		EASTING 1,528,760	24 HR . 14
DRILL	. RIG/HAN	/IMER EF	F./DATI	E SI	VE6573	CME-550X	82% 05/11/	2022		DRILL	/IETHO) H.S	S. Augers HAMM	ER TYPE Automation
DRILI	LER L	ittle, J.			ST	TART DAT	E 03/23/2	23	COMP. DA	TE 03/	23/23		SURFACE WATER DEPTH N	/A
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)		0.5ft		0	BLOWS 25	PER FOO ⁻ 50	Γ 75 100	SAMP.	MOI	L O G	SOIL AND ROCK DES	CRIPTION DEPTH
585	580.5	0.4	9	3	3	•6.				-	M		588.9 GROUND SURF ROADWAY EMBANI (PAVEMENT MEDIUM STIFF TO STIFF, GRAY, SANDY CLA	KMENT) BROWN AND
575	575.2 - 572.7	5.7	2	3	3	6				-	М		573.2 ALLUVIAL	
570	-	100	2	1	2	\$\frac{1}{2} \cdot \frac{1}{2}				-	M		SOFT, BROWN AND GF CLAY, TRACE ROOT M	
565	567.7 - - -	13.2	100/0.5						100/0.5		▼		WEATHERED RO (GRANITE)	OCK
560	562.7 - - -	18.2	75	25/0.1					100/0.6					
•	557.9 - - -	23.0	60/0.1						60/0.1			- -	557.9 557.8 CRYSTALLINE R (GRANITE) Boring Terminated WITH	
													PENETRATION TEST F Elevation 557.8 ft IN CRYST (GRANITE)	

SHEET 9

GEOLOGIST Hartman, M. COUNTY CABARRUS WBS N/A TIP N/A SITE DESCRIPTION BRIDGE NO. 20 ON LINCOLN STREET (-L-) OVER IRISH BUFFALO CREEK **GROUND WTR (ft) STATION** 13+03 OFFSET 11 ft RT ALIGNMENT -L-**BORING NO**. EB1-B 0 HR. N/A COLLAR ELEV. 581.1 ft TOTAL DEPTH 55.5 ft **NORTHING** 600,521 **EASTING** 1,528,774 24 HR. FIAD **DRILL RIG/HAMMER EFF./DATE** SME6573 CME-550X 82% 05/11/2022 **DRILL METHOD** NW Casing w/ Advancer HAMMER TYPE Automatic DRILLER Little. J. **START DATE** 03/23/23 COMP. DATE 03/23/23 SURFACE WATER DEPTH N/A ELEV (ft) DEPTH BLOW COUNT (ft) 0.5ft 0.5ft 0.5ft **BLOWS PER FOOT** SAMP. MOI G SOIL AND ROCK DESCRIPTION (ft) 0.5ft 0.5ft 0.5ft 75 100 NO. ELEV. (ft) 585 **GROUND SURFACE** ROADWAY EMBANKMENT М (PAVEMENT) MEDIUM STIFF, BROWN AND GRAY, 577.6 М SANDY CLAY, A-6 575 575.1 ALLUVIAL SS-15 24% LOOSE, BROWN, CLAYEY, SILTY SAND, 572.6 -A-2-4 MEDIUM STIFF, GRAY AND BROWN, 570 CLAY, A-7-6 569.1 566.7 560.6 556.6 WEATHERED ROCK 567.6 + 13.5 566.7 + 14.4 100/0.2 (GRANITE) 100/0.2 CRYSTALLINE ROCK 565 GRAY AND BLACK, FRESH TO SLIGHT WEATHERING, VERY CLOSE TO VERY WIDE FRACTURE SPACING, HARD TO VERY HARD, GRANITE 560 REC. = 85% RQD = 57% GSI = 45-50WEATHERED ROCK 555 (GRANITE) CRYSTALLINE ROCK GRAY AND BLACK, FRESH TO SLIGHT WEATHERING, VERY CLOSE TO VERY WIDE FRACTURE SPACING, HARD TO 550 VERY HARD, GRANITE RQD = 97% GSI = 65-70 545 540 535 530 Boring Terminated at Elevation 525.6 ft IN CRYSTALLINE ROCK (GRANITE)

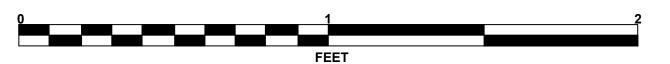
GEOTECHNICAL BORING REPORT **CORE LOG**

									<u> </u>	U	RE L	OG				
WBS	N/A				TIP	N/A		С	OUNT	Υ	CABARRI	JS	(GEOLOGIST Hartman, M.		
SITE	DESCRI	PTION	BRI	DGE NO.	20 ON	LINC	OLN STF	REET (-	-L-) O	VER	R IRISH BU	JFFALO CREEK			GROUN	D WTR (ft)
BOR	NG NO.	EB1-	В		STA	TION	13+03			OF	F FSET 1	1 ft RT	1	ALIGNMENT -L-	0 HR.	N/A
COLI	AR ELE	V . 58	31.1 ft		тот	AL DE	PTH 55	.5 ft		NC	ORTHING	600,521	- 1	EASTING 1,528,774	24 HR.	FIAD
DRILL	.RIG/HAM	MER EF	F./DATI	E SME	5573 CM	/IE-550)	X 82% 05/	11/2022	2			DRILL METHOD N	NWC	Casing w/ Advancer HAN	MER TYPE	Automatic
DRIL	LER Lit	tle, J.			STAI	RT DA	TE 03/2	23/23		C	OMP. DAT	E 03/23/23		SURFACE WATER DEPTH	N/A	
COR	E SIZE	NQ			TOTA	AL RUI	N 41.1 f	t								
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	RATA RQD (ft) %	L O G	ELEV. (f	t)	DES	SCRIPTION AND REMARKS		DEPTH (ft)
566.7														Begin Coring @ 14.4 ft		
565	566.7 565.6	14.4	5.0	N=60/0.0 :08/0.1 1:22/1.0 1:06/1.0 0:58/1.0	(0.8) 73% (4.4) 88%	(0.8) \73% (2.7) 54%		(5.2) 85%	(3.5) 57%	1474	566.7			CRYSTALLINE ROCK RESH TO SLIGHT WEATHERIN RACTURE SPACING, HARD TO GRANITE		
560	560.6	20.5	5.0	0:50/1.0 1:54/1.0 3:11/1.0	(0.7)	(0.0)				7	560.6			GSI = 45-50 WEATHERED ROCK		20.5
	555.0		0.0	0:54/1.0 0:41/1.0 0:50/1.0 0:41/1.0	14%	0%		(00.7)	(0.0.0)		556.6	-Potenti	ntial W	VR/Residual Soil Seam from 20.5	-24.5-	24.5
555	555.6	· 25.5 · ·	5.0	1:47/1.0 2:23/1.0 2:35/1.0 2:15/1.0		(5.0) 100%		(30.7) 99%	(30.0) 97%					CRYSTALLINE ROCK RESH TO SLIGHT WEATHERIN RACTURE SPACING, HARD TO GRANITE		
550	550.6	30.5	5.0	2:09/1.0 1:53/1.0 2:57/1.0 2:19/1.0		(5.0) 100%								GSI = 65-70		
545	545.6	· 35.5	5.0	2:16/1.0 2:03/1.0 3:14/1.0 2:40/1.0		(5.0)										
E40	540.6	. 40.5		2:45/1.0 2:42/1.0 2:29/1.0 2:40/1.0		100%					*					
540	‡	•	5.0	4:48/1.0 3:54/1.0 3:07/1.0 2:16/1.0		(5.0) 100%										
535	535.6	45.5	5.0	2:43/1.0 4:14/1.0 4:00/1.0 4:19/1.0		(5.0) 100%										
530	530.6	50.5	5.0	4:48/1.0 4:48/1.0 3:03/1.0 4:14/1.0	(5.0) 100%	(5.0) 100%										
	525.6	55.5		3:54/1.0 4:33/1.0 6:00/1.0							525.6	Boring Termina	nated	at Elevation 525.6 ft IN CRYSTA	LLINE ROCK	55.5
	İ										-	J		(GRANITE)		
	<u> </u>	•									-					
	+										-					
	 	•									-					
	Ī										[-					
	Ī										<u>-</u>					
	‡	· ·									<u>-</u>					
	‡	•									<u>-</u> -					
	‡	· · ·									-					
	‡										-					

GEOTECHNICAL BORING REPORT CORE LOG

		BURE LUG			1	JURE LUG	
WBS N/A	TIP N/A COUN	ITY CABARRUS	GEOLOGIST Swartley, J.	WBS N/A	·	TY CABARRUS	GEOLOGIST Swartley, J.
SITE DESCRIPTION BRIDG	E NO. 20 ON LINCOLN STREET (-L-)	OVER IRISH BUFFALO CREEK	GROUND WTR (ft)	SITE DESCRIPTION BRIDGE NO). 20 ON LINCOLN STREET (-L-) (OVER IRISH BUFFALO CREEK	GROUND WT
BORING NO. EB2-A	STATION 14+58	OFFSET 13 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. EB2-A	STATION 14+58	OFFSET 13 ft LT	ALIGNMENT -L- 0 HR.
COLLAR ELEV. 580.9 ft	TOTAL DEPTH 69.0 ft	NORTHING 600,673	EASTING 1,528,811 24 HR. 14.8	COLLAR ELEV. 580.9 ft	TOTAL DEPTH 69.0 ft	NORTHING 600,673	EASTING 1,528,811 24 HR .
DRILL RIG/HAMMER EFF/DATE	SME6573 CME-550X 82% 05/11/2022	DRILL METHOD	NW Casing w/ Advancer HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE SME	E6573 CME-550X 82% 05/11/2022	DRILL METHOD	NW Casing w/ Advancer HAMMER TYPE Autor
DRILLER Little, J.	START DATE 03/20/23	COMP. DATE 03/21/23	SURFACE WATER DEPTH N/A	DRILLER Little, J.	START DATE 03/20/23	COMP. DATE 03/21/23	SURFACE WATER DEPTH N/A
ELEV DRIVE DEPTH BLOW		OT SAMP.	SOIL AND ROCK DESCRIPTION	CORE SIZE NQ	TOTAL RUN 40.9 ft		•
(ft) (ft) (ft) 0.5ft 0.	5ft 0.5ft 0 25 50	75 100 NO. MOI G	ELEV. (ft) DEPTH (ft)	ELEV RUN DEPTH RUN DRILL RATE	RUN SAMP. REC. RQD	L	DESCRIPTION AND REMARKS
				(ft) ELEV (ft) (ft) RATE (Min/ft)	1 /#\ 1 /#\ 1 NO 1 /#\ 1 /#\	G _{ELEV. (ft)}	DESCRIPTION AND REWARKS DE
585				552.77			Begin Coring @ 28.1 ft
				552.8 28.1 2.4 N=60/0.0 550.4 30.5 2.4 N=60/0.0 550.4 30.5 2.20/1.0 5.0 3.30/1.0	0 (2.0) (2.0) (40.3) (38.1 4 83% 83% 99% 95%	7) 552.8 GRAY AND BI	CRYSTALLINE ROCK LACK, FRESH TO SLIGHT WEATHERING, CLOSE TO
500 6 0 0 0			[โลลูค.ลู GROUND SURFACE ค.ลู	550 550.4 7 30.5 2:20/1.0 3:30/1.0 3:30/1.0	(4.9) (3.7) 0 98% 74%	WIDE FRAC	CTURE SPACING, HARD TO VERY HARD, GRANITE
580.6 - 0.3	8 4 12	M 150	ROADWAY EMBANKMENT 1.0 (PAVEMENT)		3 96% 74%		GSI = 70-75
577.2 3.7			MEDIUM DENSE, GRAY, GRAVEL, A-1-a	3:30/1.0 3:05/1.0 3:05/1.0 3:25/1.0 2:45/1.0 3:15/1.0	(5.0) (5.0)		
575 574.9 6.0	3 3 •6	. M	LOOSE, TAN, SILTY SAND, A-2-4	+ 3.0 3:00/1.0 3:05/1.0	0 100% 100%		
2 3	3 3	Sat.	SOFT TO MEDIUM STIFF, RED AND ORANGE, CLAY, A-7-6	2:30/1.0 2:45/1.0 2:20/4.0			
572.5 + 8.4 WOH WO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat.	570.9 10.0	540 540.4 + 40.5 2:30/1.0 5.0 3:15/1.0) (5.0) (5.0)		
570			ALLUVIAL	† 3:00/1.0	0 100% 100%		
567.5 + 13.4			ORANGE, CLAY, A-7-6	535 535.4 45.5 3:00/1.0 3:20/1.0		WIDE FRAC	
565 WOH WO	^{∨⊓}	SS-4 29%	LOOSE, GRAY, CLAYEY, SILTY SAND, 'A-2-4	5.0 3:30/1.0 3:20/1.0	0 (5.0) (4.9) 0 100% 98%		
\Box \Box \Box \Box	<u> </u>		563.9 LOOSE, GRAY, SAND, A-3 17.0	3:05/1.0 3:20/1.0			
562.5 + 18.4 3 4	4 3	-	LOOSE, GRAT, SAND, A-3) (5.0) (5.0)		
560		000	558.0		0 100% 100%		
557.5 + 23.4	:'-:- :::: ::::		MEDIUM DENSE, GRAY, COARSE SAND	525 525.4 + 55.5 4:20/1.0 5:00/1.0			
555	9 12 \vdots	Sat. Ood	556.5 WITH GRAVEL, A-1-b 24.4 RESIDUAL 26.0	5.0 4:15/1.0	0 (4.9) (4.6) 0 98% 92%		
			MEDIUM DENSE, GRAY, COARSE SAND	4:30/1.0 4:05/1.0			
552.8 + 28.1 60/0.0		60/0.0	WEATHERED ROCK	520 520.4 + 60.5 4:00/1.0 5.0 3:15/1.0	0 (5.0) (5.0)		
550			(GRANITE) CRYSTALLINE ROCK	† 2:30/1.0 † 2:30/1.0	0 100% 100%		
		رهيها اا	GRAY AND BLACK, FRESH TO SLIGHT WEATHERING, CLOSE TO WIDE	† 2:40/1.0 515 515.4 † 65.5 2:40/1.0			
			FRACTURE SPACING, HARD TO VERY HARD, GRANITE	T 3.5 4:00/1.0	0 (3.5) (3.5) 0 100% 100%		
545			REC. = 99%	511.9 69.0 2:30/1.0		511.9	ninated at Elevation 511.9 ft IN CRYSTALLINE ROCK
		وهجيرا اا	RQD = 95% GSI = 70-75			Boring Term	(GRANITE)
540			93. 70 10				
		ينهجيها اا					
						-	
535							
530				6053			
530				<u> </u>			
		ينهجيها المال					
						-	
525							
520				HE			
						-	
515							
			511.9 69.0				
			Boring Terminated at Elevation 511.9 ft IN CRYSTALLINE ROCK (GRANITE)				
			<u> </u>			-	
\$	1 1	1 1 1		¥I	1 1 1 1 1	1 1	

585	
BORING NO. EB2-B STATION 14+50 OFFSET 6 ft RT ALIGNMENT -L- O HR.	
COLLAR ELEV. 580.7 ft TOTAL DEPTH 26.1 ft NORTHING 600,659 EASTING 1,528,826 24 HR. DRILL RIGHAMMER EFF/DATE SME6573 CME-550X 82% 05/11/2022 DRILL METHOD Mud Rotary HAMMER TYPE Aut DRILLER Little, J. START DATE 03/22/23 COMP. DATE 03/22/23 SURFACE WATER DEPTH N/A ELEV (ft) DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT 0.5ft SAMP. NO. NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPTION ELEV. (ft) 585 TOTAL DEPTH 26.1 ft NO. NO. NO. NO. NO. SOIL AND ROCK DESCRIPTION ELEV. (ft)	/TR (ft)
DRILL RIG/HAMMER EFF/DATE SME6573 CME-550X 82% 05/11/2022 DRILL METHOD Mud Rotary HAMMER TYPE Aut DRILLER Little, J. START DATE 03/22/23 COMP. DATE 03/22/23 SURFACE WATER DEPTH N/A ELEV (ft) DRIVE (LEV (ft)) DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT (ft) SAMP. (NO.) NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPTION (ft) 585 COMP. DATE 0.5ft	N/A
DRILLER Little, J. START DATE 03/22/23 COMP. DATE 03/22/23 SURFACE WATER DEPTH N/A	14.8
DRIVE CIEV (ft) DEPTH (ft	omatic
SOIL AND ROCK DESCRIPTION NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPTION	
T S80.7 GROUND SURFACE	DEPTH (ft)
I I I I I I GROUND SURFACE	
580 579.7 1.0 LIB-579.7 ROADWAY EMBANKMENT	0.0
6 3 3 (PAVEMENT)	<i></i>
5//.0 3/ 3 4 4 1 1 1 1 1 1 1 1 1	5.5
SOFT, GRAY AND BROWN, HIGHLY	
572.0 8.7 PLASTIC, CLAY WITH TRACE TO	
WOH WOH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
HIGHLY PLASTIC, CLAY, A-7-5	
567.0 13.7 WOH WOH WOH OH O	14.7
565 VERY SOFT, GRAY, SANDY CLAY, A-6	<u>17.0</u>
562.0 18.7 VERY SOFT, ORANGE, HIGHLY	
560	19.2
557.0 23.7 5 20 16 5 20 16 5 20 16 5 20 16 5 20 16 5 20 16 5 20 20 20 20 20 20 20 20 20 20 20 20 20	24.2
555 554.7 26.0 DENSE, GRAY, COARSE SAND WITH	25.5 26.0
60/0.1 GRAVEL, A-1-b/a WEATHERED ROCK	26.1
- CRYSTALLINE ROCK (GRANITE)	
Boring Terminated WITH STANDARD PENETRATION TEST REFUSAL at	_
+ Elevation 554.6 ft IN CRYSTALLINE ROCK	
GRANITE)	
<u>+</u>	
 	

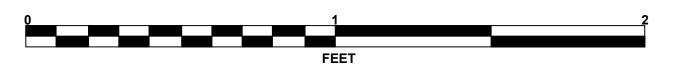

		BORE LOG																
WBS N/A	TIP N/A	COUNTY CABARRUS	GEOLOGIST Swartley, J.		WB	S N/A			TIP	N/A	COUNT	Y CABARRI	US		GEOLOG	SWartley, C	l	
SITE DESCRIPTION BRIDGE N	O. 20 ON LINCOLN STREET	(-L-) OVER IRISH BUFFALO CREEK		GROUND WTR (ft)	SITE	E DESCRI	PTION	BRIDGE NO	D. 20 O	N LINCOLN STREE	T (-L-) O	VER IRISH BU	JFFALC	CREEK			GROUND \	WTR (ft)
BORING NO. HA-1	STATION 11+16	OFFSET 38 ft LT	ALIGNMENT -L-	0 HR. Dry	BOF	RING NO.	HA-2		STA	TION 14+45		OFFSET 3	30 ft RT		ALIGNM	ENT -L-	0 HR.	8.0
COLLAR ELEV. 608.2 ft	TOTAL DEPTH 5.1 ft	NORTHING 600,357		24 HR. Dry		LAR ELE				AL DEPTH 5.0 ft		NORTHING				1,528,846	24 HR.	0.7
DRILL RIG/HAMMER EFF/DATE N/A		DRILL METHOD Ha	nd Auger HAMM	ERTYPE Sowers DCP	DRIL	L RIG/HAM	MER EFF	JOATE NA					DRILL N	/IETHOD	Hand Auger		HAMMER TYPE N	/A
DRILLER Swartley, J.	START DATE 03/22/23		SURFACE WATER DEPTH N/	/A		LLER S	-			ART DATE 03/22/2	3	COMP. DAT		22/23	SURFAC	E WATER DEPT	H N/A	
ELEV DRIVE DEPTH DCP BLOV (ft) (ft) (ft) 1.75" 1.75"		SAMP.	SOIL AND ROCK DESC	CRIPTION	ELE\	/ DRIVE ELEV	DEPTH	BLOW COUN	NT	BLOWS			SAMP.	/ 6		SOIL AND ROC	K DESCRIPTION	
(ft) (ft) (ft) 1.75" 1.75"	1.75"	NO. MOI G	ELEV. (ft)	DEPTH (ft)	(11)	(ft)	(11)	0.5ft 0.5ft 0	0.5ft (0 25 5	50	75 100	NO.	MOI G				
610					575		-								_			
			608.2 GROUND SURFA	ACE 0.0			-								-			
608.2 0.0 2 3	5		RESIDUAL			1 +	-								-			
607.2 1.0 3 4	2	S-6 24%	SOFT, ORANGE, SAND	Y CLAY, A-6			-								- 571.7		SURFACE	0.0
606.2 2.0 5 13	24						-									LOOSE, GRA	IVIAL .Y, SAND, A-3	
605 605.2 3.0 18 25/1.0"			605.2 DENSE, TAN AND GRAY,	SAPROLITIC,	570	- - 	-					 		000				
604.2 4.0 25/1.0"		M	SILTY SAND, A-	-2-4			-							Sat.	<u></u>			
603.2 5.0 25/1.0"	 		603.2 Boring Terminated at Eleva	5.1 tion 603.2 ft IN			-					.		000	- - - 566.7			
			DĔNSE SILTY SAND (F	RESIDUAL)		-	-		Ш					000	566.7		. F	5.0
							-								- 80	LOOSE SAN	t Elevation 566.7 ft IN D (ALLUVIAL)	'
						-	-								- *H	ole caving at 5.0 fe	et due to water table	e; _.
						1 +	-								- co	ald not advance wi this o	h Hand Auger beyon lepth*	nd
						1 +	-								-			
							-								=			
							-								-			
						-	-								_			
							-								-			
							-								-			
						1 +	-								-			
							-								-			
							-								_			
							-								-			
							-								-			
							-								=			
							-								-			
						-	-								-			
							-								=			
6/16/23							-								-			
							-								_			
<u>)</u>							-								_			
						4	-								_			
							-								-			
							-								-			
R							-								-			
							-								-			
 			-				-								_			
							-								-			
							_								-			
M +							_								_			
							_								_			
S																		

CORE PHOTOGRAPHS

EB1-BBOXES 1 & 2: 14.4 - 38.7 FEET

20.5

EB1-BBOXEX 3 & 4: 38.7 - 55.5 FEET



CORE PHOTOGRAPHS

EB2-ABOXES 1 & 2: 28.1 - 47.2 FEET

30.5

EB2-ABOXES 3 & 4: 47.2 - 64.7 FEET

CORE PHOTOGRAPHS

EB2-ABOX 5: 64.7 - 69.0 FEET

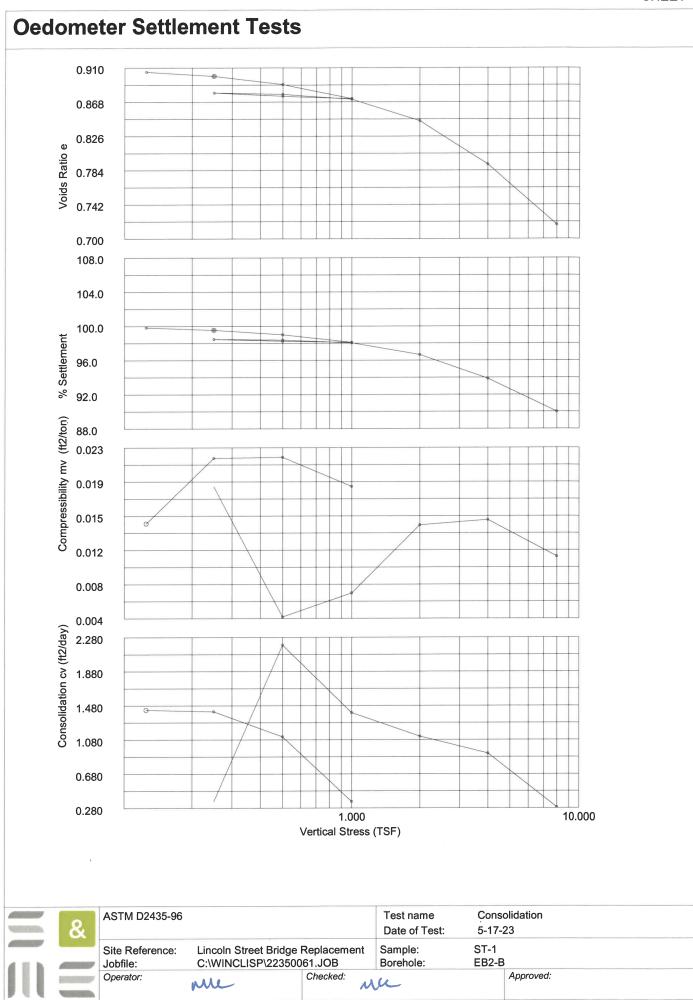
SUMMARY OF LABORATOTY TEST DATA

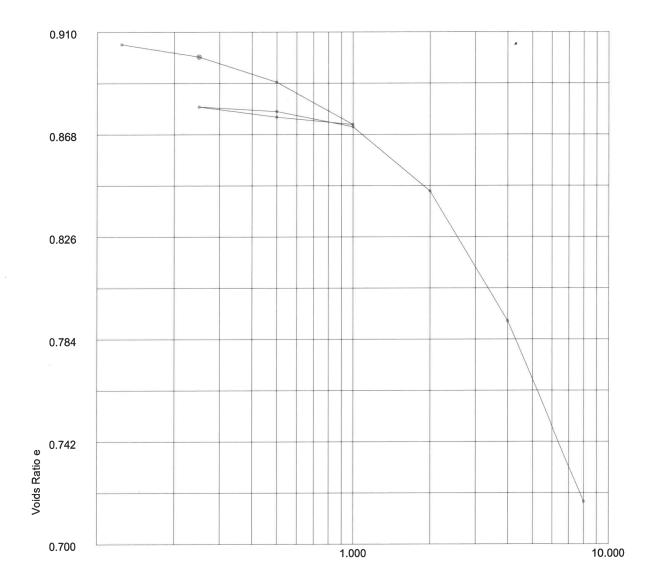
Soil Classification and Gradation

				S&N	/IE, Inc. Rale	eigh, 3201 Sprii	ng Fore	st Road,	Raleigh	, North	Carolina	27616						
S&ME Proje	ect #:	22350061												Date	Report	5,	/19/20	23
State Proje	ct No.:	N/A							County	:	Cabarru	IS		Date	Tested	5/1	5 - 5/19	9/23
Federal ID I	No.:	N/A							TIP No.	:	N/A							
Project Nar	me:	Lincoln St	reet Brid	ge Repla	cement													
Client Nam	ie:	Stantec, li	nc.						Client A	ddress:	Raleigh	, NC						
	No.			int	Sample	AASHTO		Total %	Passing		Tota	Mortar	Fractio	n (%)				, ,
ple	ا ور	uo	et	ıme	Depth	Classification		Sie	ve#		Coarse	Fine						t. %
Sample No.	Boring	Station No.	Offset	Alignment	(ft)		10	40	60	200	Sand	Sand	Silt	Clay	LL	PL	PI	Moist.
SS-4	EB2-A	14+58	13' LT	-L-	13.4-14.9	A-2-4 (0)	100	99	89	35.4	11	61	12	16	26	23	3	28.5
S-6	HA-1	11+15	38' LT	-L-	0.0-3.0	A-6 (3)	97	74	65	44.8	33	25	11	31	38	25	13	24.0
SS-10	EB2-B	14+50	6' RT	-L-	13.7-14.7	A-7-6 (23)	100	99	98	91.7	2	11	35	52	50	28	22	34.5
SS-15	EB1-B	13+03	11' RT	-L-	6.0-7.5	A-2-4 (0)	99	87	64	32.5	36	36	11	17	27	25	2	24.
ST-1	EB2-B	14+50	6' RT	-L-	8.0-10.0	A-7-5 (30)	100	99	98	95.5	2	4	33	61	56	30	26	31.3
_																		<u> </u>
																		<u> </u>
																		<u> </u>
																		<u> </u>
-		nts / Deviatio		s Madifia	N.P.=Non-F d by the NC					۸ ۸ C L I T (D T89: De	tarminin	a tha Lia	uid Limit	of Coile			
		-			y Index of So						O T265: L		_			ure Con	itent of	Soils
		9			•	tures for Highwa	v Constr	uction Pi	urposes	70.0111	O 1203. L		y Deteri	middon	01 1410130	are con	iterit Of	50113
2.31110 1111	.5		2. 20113 41	5511719	g. egate 1111A	Q_	, 551150	2.000111	p 0 3 0 3									
	<u>M</u> a	al Krajan, E	<u>Γ</u>		N			<u>104-</u> 0	<u>1-0703</u>		V	'lad Mit	chev, P.	<u>E.</u>	<u>.</u> Pı	roject N	Manag	<u>er</u>
		chnician Name			Si	gnature			cation #			chnical Re				•	tion	

22350061_Geotech_Lab_Summary.xls S&ME, Inc. Raleigh, NC 27616

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.


Sample details 8-10 ft. Depth Sketch showing specimen Brown Silty CLAY (A-7-5) (30) Description: location in original Sample Type Height H₀ (in) Diameter D₀ (in) Undisturbed 0.999 2.501 Weight W₀ (gr) 147.7 Bulk Density ρ (PCF) Particle Density ρ_s 114.65 2.671 (measured)


Initial Conditions			
Settlement Channel	1001 31.3		
Moisture Content w ₀ % Dry Density p _d (PCF)	87.34		
Voids Ratio e ₀	0.9084		
Deg of Saturation S ₀ % Swelling Pressure Ss (TSF)	92.0 0.000		

Final Conditions	
Moisture Content w _f %	27.6
Dry Density ρ _d (PCF)	97.05
Voids Ratio e _f	0.7174
Deg of Saturation S _f %	100.00
Settlement: (in)	0.10
Compression Index C _C	0.263
Notes:	Test specimen taken from the middle portion of UD tube.

			Test name	001100	lidation
			Date of Test:	5-17-2	.3
Site Reference:	Lincoln Street Bridge I	Replacement	Sample:	ST-1	
Jobfile:	C:\WINCLISP\223500	61.JOB	Borehole:	EB2-B	
Operator:	M	Checked:	mle		Approved:
J	lobfile:	obfile: C:\WINCLISP\223500	lobfile: C:\WINCLISP\22350061.JOB	Site Reference: Lincoln Street Bridge Replacement Sample: lobfile: C:\WINCLISP\22350061.JOB Borehole:	Site Reference: Lincoln Street Bridge Replacement Sample: ST-1 lobfile: C:\WINCLISP\22350061.JOB Borehole: EB2-B

SHEET 18

Vertical Stress (TSF)

	&	ASTM D2435-96			Test name Date of Test:	Conso 5-17-2	olidation 23
		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	3
Ш		Operator:	me	Checked:	ne		Approved:

100.0 97.6 95.2 92.8 90.4 % Settlement 88.0 10.000 1.000 Vertical Stress (TSF)

Consolidation

Approved:

5-17-23 ST-1

EB2-B

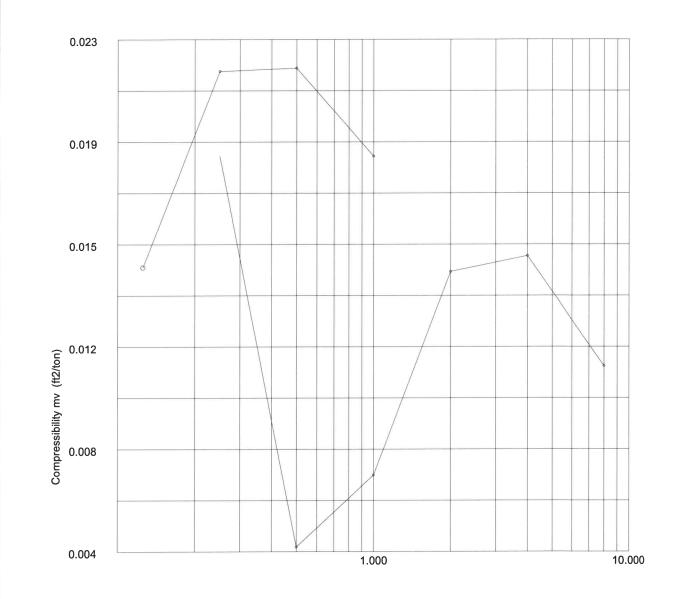
Test name
Date of Test:

Sample:

me

Borehole:

Lincoln Street Bridge Replacement C:\WINCLISP\22350061.JOB

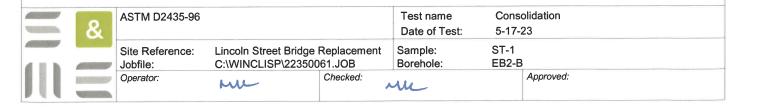

me

Checked:

Oedometer Settlement Tests

ASTM D2435-96

Site Reference:



Vertical Stress (TSF)

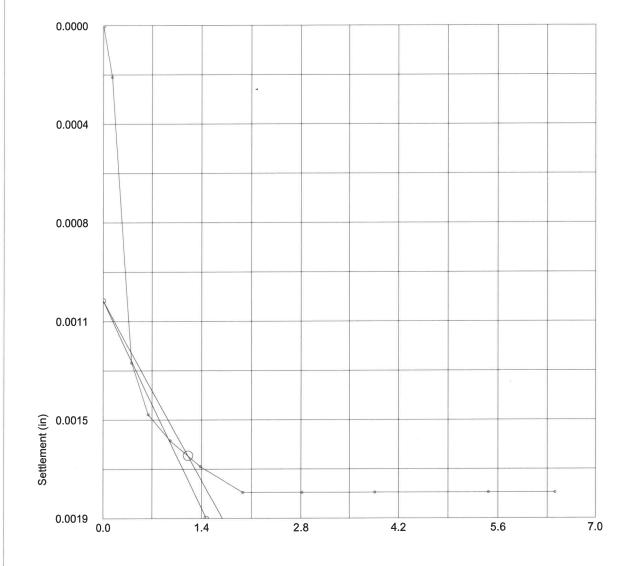
	&	ASTM D2435-96			Test name Date of Test:	Consc 5-17-2	olidation 23	
411		Site Reference: Jobfile:	Lincoln Street Bridge I C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	}	
		Operator:	me	Checked:	u		Approved:	

2.280 1.880 1.480 1.080 Consolidation cv (ft2/day) 0.680 0.280 10.000 1.000

Oedometer Settlement Tests

Vertical Stress (TSF)

Stress	Initial	Settlement	Cal Corr.	Final	Voids	t ₉₀	Secondary	C _v	m _v
(TSF)	Temp. oC	Total (in)	(in)	Temp. oC	Ratio e _f	(mins)	Compr C _{sec}	(ft2/day)	(ft2/ton)
0.125	21.8	0.0018	0.0	21.8	0.9050	1.479	0.00	1.428	0.014
0.250	21.8	0.0045	0.0	21.8	0.8998	1.491	0.00	1.410	0.022
0.500	21.8	0.0099	0.0	21.8	0.8895	1.869	0.00	1.116	0.022
1.000	21.8	0.0190	0.0	21.8	0.8721	5.758	0.00	0.357	0.019
0.500	21.8	0.0174	0.0	21.8	0.8752				0.003
0.250	21.8	0.0152	0.0	21.8	0.8794				0.009
0.500	21.8	0.0162	0.0	21.8	0.8774	0.936	0.00	2.190	0.004
1.000	21.8	0.0195	0.0	21.8	0.8711	1.460	0.00	1.397	0.007
2.000	21.8	0.0333	0.0	21.8	0.8448	1.792	0.00	1.119	0.014
4.000	21.8	0.0612	0.0	21.8	0.7915	2.085	0.00	0.921	0.015
8.000	21.8	0.1000	0.0	21.8	0.7174	6.172	0.00	0.290	0.011


	&	ASTM D2435-96			Test name Date of Test:	Conso 5-17-2	olidation 23	
4 11 1		Site Reference: Jobfile:	Lincoln Street Bridge I C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	l .	
Ш	1000000	Operator:	me	Checked:	we		Approved:	

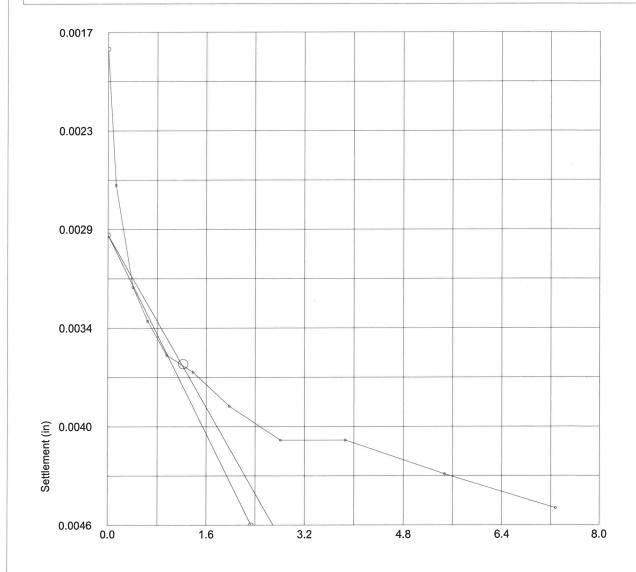
SHEET 21

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	0	0.0000	0.0000
2	0.017	2	0.0002	0.0002
3	0.167	13	0.0013	0.0013
4	0.419	15	0.0015	0.0015
5	0.917	16	0.0016	0.0016
6	1.917	17	0.0017	0.0017
7	3.917	18	0.0018	0.0018
8	7.917	18	0.0018	0.0018
9	14.917	18	0.0018	0.0018
10	29.917	18	0.0018	0.0018
11	41.133	18	0.0018	0.0018

ASTM D2435-9				Test name Date of Test:	Conso 5-17-	olidation Load: 0.125 (TSF) 23
	Site Reference: Jobfile:	Lincoln Street Brid C:\WINCLISP\223	• •	Sample: Borehole:	ST-1 EB2-B	
	Operator:	mu	Checked:	vh_		Approved:

Settlement Stage Results 0.125 21.8 Vertical Stress (TSF) Initial Temp oC 0.0 Correction (in) Settlement (in) 0.0018 Voids Ratio e 0.9050 Final Temp oC 0.0 t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 1.48 1.428 0.014 0.00

Root Time (mins)

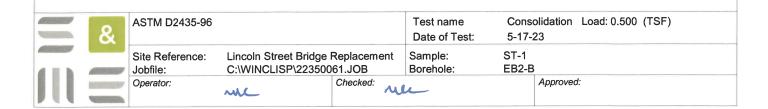

	&	ASTM D2435-96			Test name Date of Test:	Cons 5-17-	olidation 23	
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	3	
Ш		Operator:	MIL	Checked:	w		Approved:	

SHEET 22

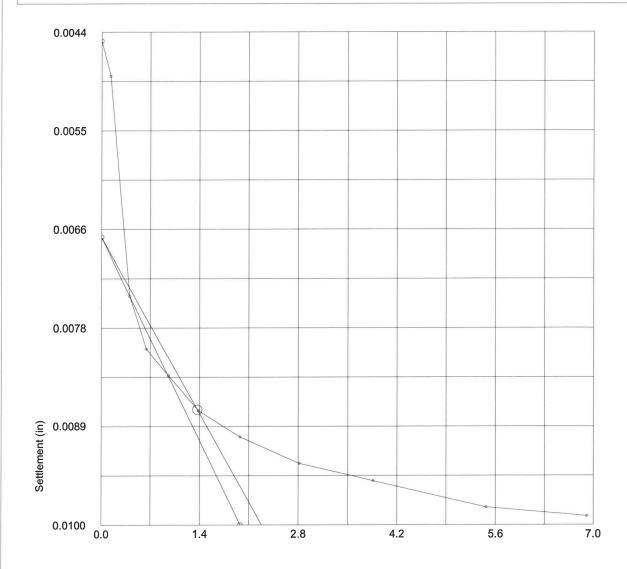
No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	18	0.0018	0.0018
2	0.017	26	0.0026	0.0026
3	0.167	32	0.0032	0.0032
4	0.417	34	0.0034	0.0034
5	0.917	36	0.0036	0.0036
6	1.917	37	0.0037	0.0037
7	3.917	39	0.0039	0.0039
8	7.917	41	0.0041	0.0041
9	14.917	41	0.0041	0.0041
10	29.917	43	0.0043	0.0043
11	52.967	45	0.0045	0.0045

40000	ASTM D2435-96		Test name Date of Test:	Consolidation Load: 0.250 (TSF) 5-17-23			
411		Site Reference: Jobfile:	Lincoln Street Bridge F C:\WINCLISP\223500		Sample: Borehole:	ST-1 EB2-B	
Ш	-	Operator:	ML.	Checked:	u		Approved:

Settlement Stage Results		
Vertical Stress (TSF)	0.250	
Initial Temp oC	21.8	
Correction (in)	0.0	
Settlement (in)	0.0027	
Voids Ratio e	0.8998	
Final Temp oC	0.0	
t ₉₀ (mins)	1.49	
c _v (ft2/day)	1.41	
m, (ft2/ton)	0.022	
Sec Compression C _{sec}	0.00	



Root Time (mins)

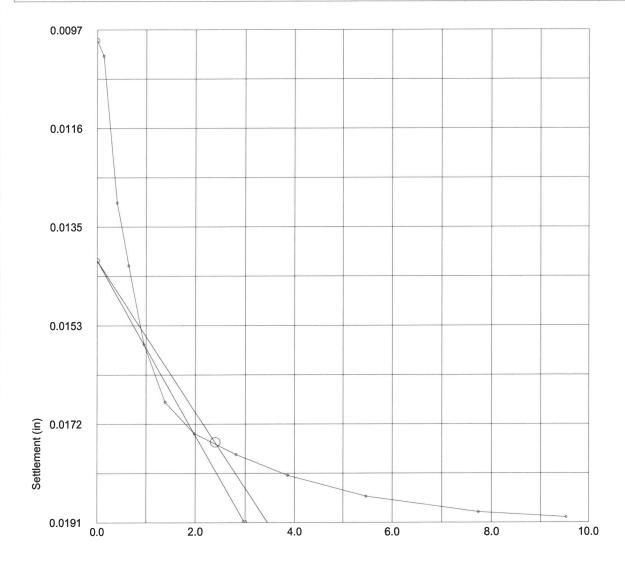

	&	ASTM D2435-96			Date of Test:	5-17-2	olidation 23	
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B		
Ш		Operator:	ML	Checked:	ue		Approved:	

SHEET 23

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	45	0.0045	0.0045
2	0.017	49	0.0049	0.0049
3	0.167	74	0.0074	0.0074
4	0.417	80	0.0080	0.0080
5	0.917	83	0.0083	0.0083
6	1.917	87	0.0087	0.0087
7	3.917	90	0.0090	0.0090
8	7.917	93	0.0093	0.0093
9	14.917	95	0.0095	0.0095
10	29.917	98	0.0098	0.0098
11	47.800	99	0.0099	0.0099

Settlement Stage Results		
Vertical Stress (TSF)	0.500	
Initial Temp oC	21.8	
Correction (in)	0.0	
Settlement (in)	0.0054	
Voids Ratio e	0.8895	
Final Temp oC	0.0	
t ₉₀ (mins)	1.87	
c _v (ft2/day)	1.116	
m, (ft2/ton)	0.022	
Sec Compression C _{sec}	0.00	

Root Time (mins)


	&	ASTM D2435-96			Test name Date of Test:	Consolidation 5-17-23		
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B		
Ш		Operator:	ML	Checked:	w		Approved:	

SHEET 24

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlemen (in)
1	0.000	99	0.0099	0.0099
2	0.017	102	0.0102	0.0102
3	0.167	130	0.0130	0.0130
4	0.417	142	0.0142	0.0142
5	0.917	157	0.0157	0.0157
6	1.917	168	0.0168	0.0168
7	3.917	174	0.0174	0.0174
8	7.917	178	0.0178	0.0178
9	14.917	182	0.0182	0.0182
10	29.917	186	0.0186	0.0186
11	59.917	189	0.0189	0.0189
12	90.817	190	0.0190	0.0190

=	&	ASTM D2435-96			Test name Date of Test:	Consolidation Load: 1.000 (TSF) 5-17-23		
411		Site Reference: Jobfile:	Lincoln Street Bridge Replacement C:\WINCLISP\22350061.JOB		Sample: Borehole:	ST-1 EB2-B		
		Operator:	ML	Checked:	me	A	pproved:	

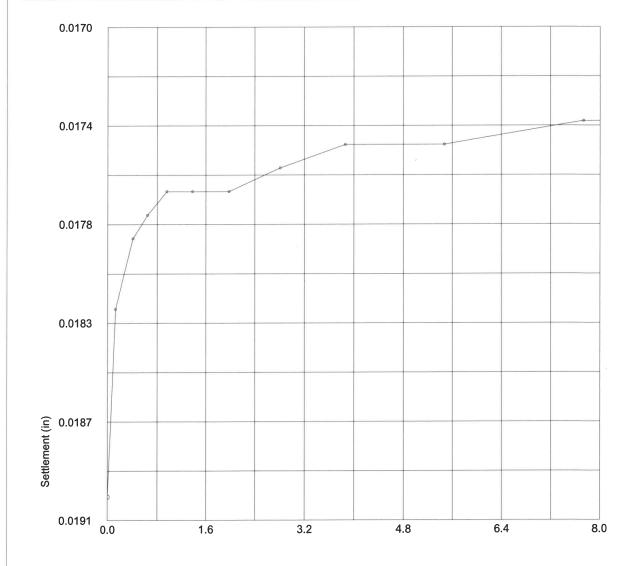
Settlement Stage Results		
Vertical Stress (TSF)	1.000	
Initial Temp oC	21.8	
Correction (in)	0.0	
Settlement (in)	0.0091	
Voids Ratio e	0.8721	
Final Temp oC	0.0	
t ₉₀ (mins)	5.76	
c _v (ft2/day)	0.357	
m, (ft2/ton)	0.019	
Sec Compression C _{sec}	0.00	



Root Time (mins)

	&	ASTM D2435-96			Test name Date of Test:	Conse 5-17-		
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	3	
	-	Operator:	mu	Checked:	u		Approved:	

SHEET 25


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	190	0.0190	0.0190
2	0.017	182	0.0182	0.0182
3	0.167	179	0.0179	0.0179
4	0.417	178	0.0178	0.0178
5	0.917	177	0.0177	0.0177
6	1.917	177	0.0177	0.0177
7	3.917	177	0.0177	0.0177
8	7.917	176	0.0176	0.0176
9	14.917	175	0.0175	0.0175
10	29.917	175	0.0175	0.0175
11	59.917	174	0.0174	0.0174
12	65.267	174	0.0174	0.0174

Settlement Stage Results

0.500 21.8 Vertical Stress (TSF) Initial Temp oC Correction (in) 0.0 0.0016 0.8752 Settlement (in) Voids Ratio e

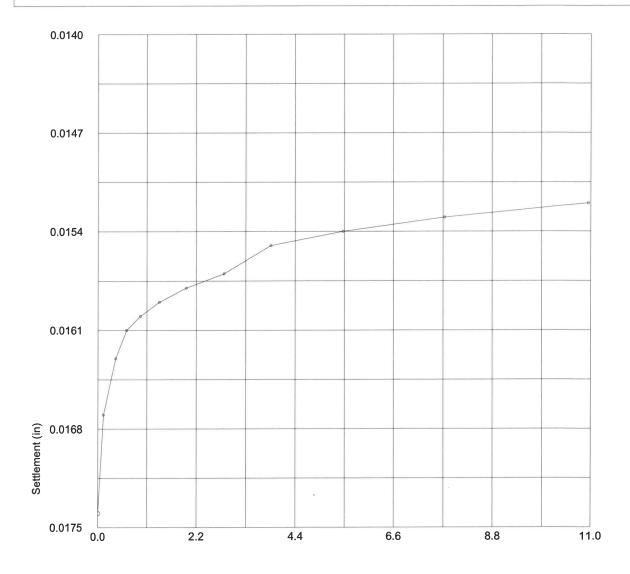
Final Temp oC t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec}

Root Time (mins)

	&	ASTM D2435-96			Test name Date of Test:	Consoli 5-17-23		
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B		
Ш		Operator:	ML	Checked:	me	A	Approved:	

SHEET 26

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	174	0.0174	0.0174
2	0.017	167	0.0167	0.0167
3	0.167	163	0.0163	0.0163
4	0.417	161	0.0161	0.0161
5 *	0.917	160	0.0160	0.0160
6	1.917	159	0.0159	0.0159
7	3.917	158	0.0158	0.0158
8	7.917	157	0.0157	0.0157
9	14.917	155	0.0155	0.0155
10	29.917	154	0.0154	0.0154
11	59.917	153	0.0153	0.0153
12	119.917	152	0.0152	0.0152


	&	ASTM D2435-96		Test name Date of Test:	Consolidation Load: 0.250 (TSF) 5-17-23		
4 11 1		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	
		Operator:	ML	Checked:	ML		Approved:

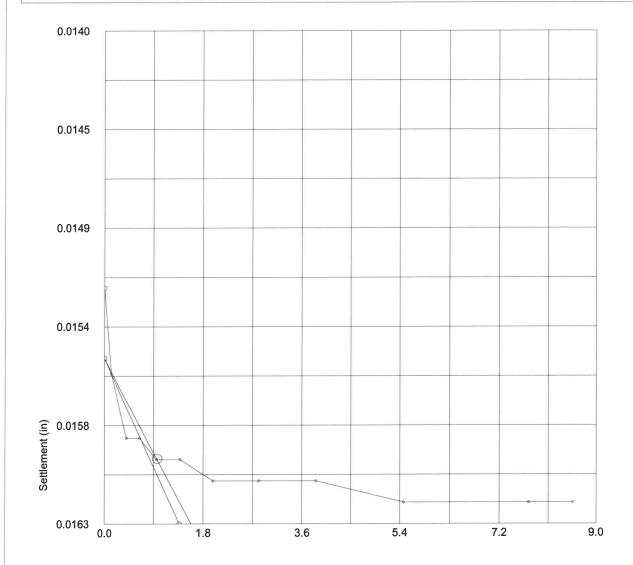
0.250 Vertical Stress (TSF) Initial Temp oC

21.8 0.0 Correction (in) 0.0022 Settlement (in) 0.8794 Voids Ratio e

Final Temp oC t₉₀ (mins)
c_v (ft2/day)
m_v (ft2/ton)
Sec Compression C_{sec}

Settlement Stage Results

Root Time (mins)


	ASTM D2435-96			Test name	Consoli	dation	
Č	Ś.			Date of Test:	5-17-23	}	
	Site Reference:	Lincoln Street Bridge	Replacement	Sample:	ST-1		
h /600	Jobfile:	C:\WINCLISP\223500	061.JOB	Borehole:	EB2-B		
1000	Operator:	ML	Checked:	u	A	Approved:	

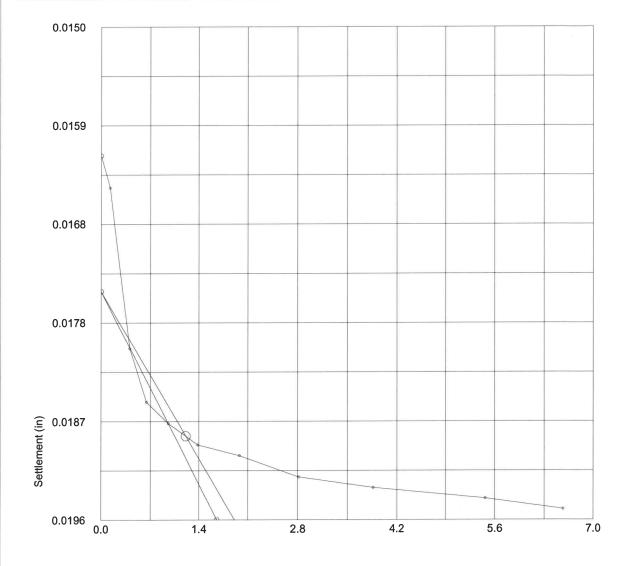
SHEET 27

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	152	0.0152	0.0152
2	0.017	156	0.0156	0.0156
3	0.167	159	0.0159	0.0159
4	0.417	159	0.0159	0.0159
5	0.917	160	0.0160	0.0160
6	1.917	160	0.0160	0.0160
7	3.917	161	0.0161	0.0161
8	7.917	161	0.0161	0.0161
9	14.917	161	0.0161	0.0161
10	29.917	162	0.0162	0.0162
11	59.917	162	0.0162	0.0162
12	73.233	162	0.0162	0.0162

ASTM D2435-9		ASTM D2435-96	12435-96		Test name Date of Test:	Consolidation Load: 0.500 (TSF) 5-17-23	
11.6		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	l
ш		Operator:	ML	Checked:	rle		Approved:

Settlement Stage Results 0.500 Vertical Stress (TSF) Initial Temp oC 21.8 0.0 Correction (in) Settlement (in) 0.001 Voids Ratio e 0.8774 Final Temp oC 0.0 t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 0.94 2.19 0.004 0.00

Root Time (mins)


	&	ASTM D2435-96			Test name Date of Test:	Consolidation 5-17-23	
411		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	
Ш		Operator:	mu	Checked:	me	Approved:	

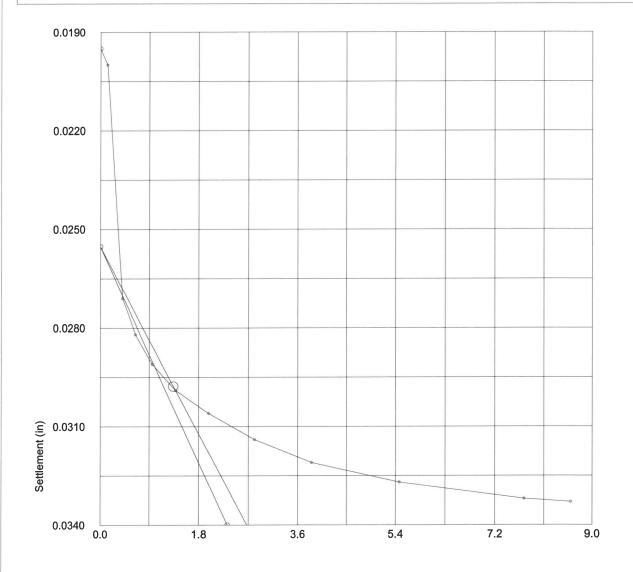
SHEET 28

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)	
1	0.000	162	0.0162	0.0162	
2	0.017	165	0.0165	0.0165	
3	0.167	180	0.0180	0.0180	
4	0.417	185	0.0185	0.0185	
5	0.917	187	0.0187	0.0187	
6	1.917	189	0.0189	0.0189	
7	3.917	190	0.0190	0.0190	
8	7.917	192	0.0192	0.0192	
9	14.917	193	0.0193	0.0193	
10	29.917	194	0.0194	0.0194	
11	43.150	195	0.0195	0.0195	

&	ASTM D2435-96			Test name Date of Test:	Conse 5-17-	olidation Load: 1.000 (TSF) 23
	Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500		Sample: Borehole:	ST-1 EB2-B	
	Operator:	ML	Checked:	uc		Approved:

Settlement Stage Results		te.
Vertical Stress (TSF)	1.000	
Initial Temp oC	21.8	
Correction (in)	0.0	
Settlement (in)	0.0033	
Voids Ratio e	0.8711	
Final Temp oC	0.0	
t ₉₀ (mins)	1.46	
c _v (ft2/day)	1.397	
m, (ft2/ton)	0.007	
Sec Compression C _{sec}	0.00	

Root Time (mins)


	ASTM D2435-96				Test name Con Date of Test: 5-17		lidation 3	
4 11 1		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B		
		Operator:	ML	Checked:	u		Approved:	

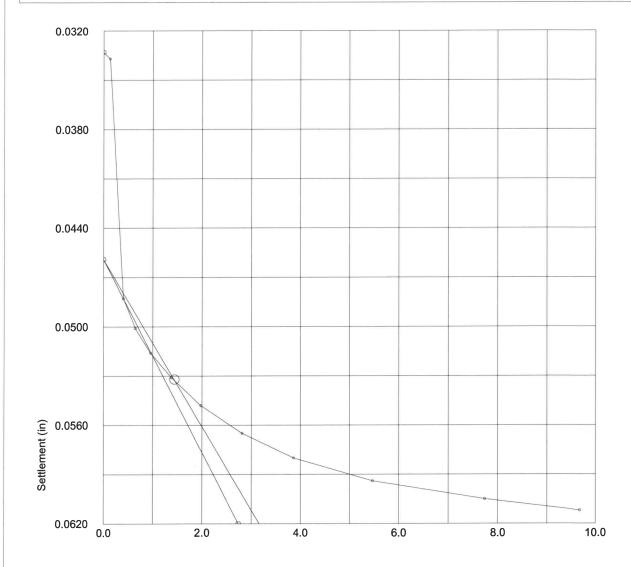
SHEET 29

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	195	0.0195	0.0195
2	0.017	200	0.0200	0.0200
3	0.167	271	0.0271	0.0271
4	0.417	282	0.0282	0.0282
5	0.917	291	0.0291	0.0291
6	1.917	299	0.0299	0.0299
7	3.917	306	0.0306	0.0306
8	7.917	314	0.0314	0.0314
9	14.917	321	0.0321	0.0321
10	29.917	327	0.0327	0.0327
11	59.917	332	0.0332	0.0332
12	73.950	333	0.0333	0.0333

8		ASTM D2435-96			Test name Date of Test:	Consolidation Load: 2.000 (TSF) 5-17-23	
LILA		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	
		Operator:	mle	Checked:	ue		Approved:

Settlement Stage Results	•	
Vertical Stress (TSF)	2.000	
Initial Temp oC	21.8	
Correction (in)	0.0	
Settlement (in)	0.0138	
Voids Ratio e	0.8448	
Final Temp oC	0.0	
t ₉₀ (mins)	1.79	
c _v (ft2/day)	1.119	
m, (ft2/ton)	0.014	
Sec Compression C _{sec}	0.00	

Root Time (mins)


6			ASTM D2435-96			Test name	Cons	olidation	
		Ŏ.				Date of Test:	5-17-	23	
			Site Reference:	Lincoln Street Bridge	Replacement	Sample:	ST-1		
4.1	l h		Jobfile:	C:\WINCLISP\223500	61.JOB	Borehole:	EB2-B	3	
18.1	18.		Operator:		Checked:	Α .		Approved:	
	I II			MIL	M	li-			

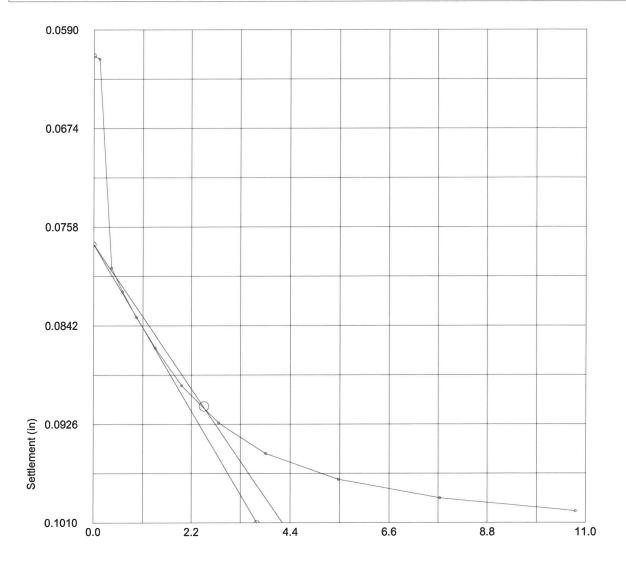
SHEET 30

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	333	0.0333	0.0333
2	0.017	337	0.0337	0.0337
, 3	0.167	483	0.0483	0.0483
4	0.417	501	0.0501	0.0501
5	0.917	516	0.0516	0.0516
6	1.917	531	0.0531	0.0531
7	3.917	548	0.0548	0.0548
8	7.917	565	0.0565	0.0565
9	14.917	580	0.0580	0.0580
10	29.917	594	0.0594	0.0594
11	59.917	605	0.0605	0.0605
12	93.717	612	0.0612	0.0612

&		ASTM D2435-96			Test name Date of Test:	Consolidation Load: 4.000 (TSF) 5-17-23			
		Site Reference: Jobfile:	: Lincoln Street Bridge Replacement C:\WINCLISP\22350061.JOB		Sample: ST Borehole: EB		3		
		Operator:	me	Checked:	ML		Approved:		

Settlement Stage Results 4.000 Vertical Stress (TSF) Initial Temp oC 21.8 0.0 Correction (in) Settlement (in) 0.0279 Voids Ratio e 0.7915 Final Temp oC 0.0 t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 2.09 0.921 0.015 0.00

Root Time (mins)


-			ASTM D2435-96			Test name	Consc	olidation	
-15	III.	હ				Date of Test:	5-17-2	23	
()			Site Reference:	Lincoln Street Bridge	Replacement	Sample:	ST-1		
4 11	h .		Jobfile:	C:\WINCLISP\223500	61.JOB	Borehole:	EB2-B		
	1		Operator:	MIL	Checked:	u		Approved:	

SHEET 31

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	612	0.0612	0.0612
2	0.017	615	0.0615	0.0615
3	0.167	793	0.0793	0.0793
4	0.417	813	0.0813	0.0813
5	0.917	835	0.0835	0.0835
6	1.917	861	0.0861	0.0861
7	3.917	893	0.0893	0.0893
8	7.917	925	0.0925	0.0925
9	14.917	951	0.0951	0.0951
10	29.917	973	0.0973	0.0973
11	59.917	989	0.0989	0.0989
12	116.200	1000	0.1000	0.1000

	ASTM D2435-96					Conse 5-17-2	onsolidation Load: 8.000 (TSF) 17-23		
4 11 1		Site Reference: Jobfile:	Lincoln Street Bridge C:\WINCLISP\223500	•	Sample: Borehole:	ST-1 EB2-B	l		
Ш		Operator:	ML	Checked:	ML		Approved:		

Settlement Stage Results Vertical Stress (TSF) 8.000 21.8 Initial Temp oC Correction (in) 0.0 0.0388 Settlement (in) Voids Ratio e 0.7174 0.0 Final Temp oC t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 6.17 0.29 0.011 0.00

Root Time (mins)

		ASTM D2435-96			Test name	Cons	olidation			
	Sc.	Site Reference: Lincoln Street Bridge I			Date of Test:	5-17-23				
				Replacement	ement Sample:					
4 11 16		Jobfile:	C:\WINCLISP\22350061.JOB		Borehole:	EB2-B				
Ш		Operator:	ML	Checked:	VL_		Approved:			

SHEET 32

SITE PHOTOGRAPH

Bridge No. 20 on -L- (Lincoln Street) over Irish Buffalo Creek

Looking South

City of Concord Lincoln Street Bridge Replacement Opinion of Probable Construction Cost

TIP No. Lincoln Street Bridge Replacement 100% County: Cabarrus

Route Lincoln Street

From over Irish Buffalo Creek

CONSTR.

Typical Section 2-Lane C&G

\$2,683,700

Prepared By: Stantec

Requested By:

Note: This is estimate is an opinion of probable cost for contractor work only and does not include Right-of-Way costs, nor utility costs for the private utilities. Utility Construction

is provided only as a general estimate. Design and quantities for utilities to be coordinated by the City of Concord.										
		Sec								
Line Item	Des	No.	Description	Quantity	Unit		Price		Amount	
0000100000-N			Mobilization	1	LS	\$	247,567.54	\$	247,567.54	
0000400000-N			Construction Surveying	1	LS	\$	30,000.00	\$	30,000.00	
0043000000-N			Grading	1	LS	\$	125,000.00	\$	125,000.00	
0050000000-E			Supplemental Clearing and Grubbing	1	Acre	\$	8,000.00	\$	8,000.00	
0057000000-Е			Undercut Excavation	450	CY	\$	50.00	\$	22,500.00	
0127000000-N			Embankment Settlement Gauges	1	EA	\$	1,250.00	\$	1,250.00	
0134000000-E			Drainage ditch Excavation	810	CY	\$	50.00	\$	40,500.00	
0194000000-E			Select Granular Material	400	CY	\$	37.00	\$	14,800.00	
0196000000-E		270	Geotextile for Soil Stabilization	400	SY	\$	4.00	\$	1,600.00	
0248000000-N		SP	Type III Reinforced Approach Fill	1	LS	\$	55,000.00	\$	55,000.00	
0318000000-Е		300	Foundation Conditioning Material, Minor Structures	50	Tons	\$	48.00	\$	2,400.00	
0321000000-Е		300	Foundation Conditioning Geotextile	150	SY	\$	4.00	\$	600.00	
0335200000-Е		305	15" Drainage Pipe	88	LF	\$	70.00	\$	6,160.00	
0335850000-Е		305	15" Drainage Pipe Elbow	2	Each	\$	425.00	\$	850.00	
0448200000-E		310	15" RC Pipe Culv, Class IV	264	LF	\$	75.00	\$	19,800.00	
0448500000-E		310	30" RC Pipe Culv, Class IV	76	LF	\$	150.00	\$	11,400.00	
0995000000-Е		340	Pipe Removal	307	LF	\$	30.00	\$	9,210.00	
1004500000-Е		505	Geotextile for Subgrade Stabilization	300	SY	\$	10.00	\$	3,000.00	
1077000000-Е		SP	No. 57 Stone for Rock Cross Vane and Step Pool	25	Ton	\$	70.00	\$	1,750.00	
1099500000-Е		505	Shallow Undercut	100	CY	\$	15.00	\$	1,500.00	
1099700000-Е		505	Class IV Subgrade Stabilization	200	Tons	\$	40.00	\$	8,000.00	
1121000000-E			Aggregate Base Course	180	Tons	\$	50.00	\$	9,000.00	
1220000000-Е			Incidental Stone Base	50	Tons	\$	65.00	\$	3,250.00	
1330000000-Е		607	Incidental Milling	260	SY	\$	30.00	\$	7,800.00	
1491000000-E			Base Course, Type B 25.0 C	200	Tons	\$	85.00	\$	17,000.00	
1503000000-Е			Binder Course, Type I 19.0 C	60	Tons	\$	80.00	\$	4,800.00	
1519000000-E			Surface Course, Type S 9.5 B	320	Tons	\$	70.00	\$	22,400.00	
1575000000-Е			AsphBinder for Plant Mix PG64-22	35	Tons	\$	700.00	\$	24,500.00	
2022000000-Е			Subdrain Excavation	44.8	CY	\$	42.00	\$	1,881.60	
2026000000-Е			Geotextile for Subsurface Drains	200	SY	\$	8.00	\$	1,600.00	
2036000000-Е			Subdrain Coarse Aggregate	33.6	CY	\$	85.00	\$	2,856.00	
2044000000-Е			6" Perforated Subdrain Pipe	200	LF	\$	30.00	\$	6,000.00	
2070000000-N			Subdrain Pipe Outlet	1	Each	\$	425.00	\$	425.00	
2077000000-Е			6" Outlet Pipe	6		\$	45.00		270.00	
2286000000-N			Masonry Drainage Structures	7	Each	\$	3,500.00	\$	24,500.00	
2308000000-E			Masonry Drainage Structures	3.1	LF	\$	575.00	\$	1,782.50	
2374000000-N			Frame w/Grate and Hood 840.03 Type F	2	Each	\$	1,250.00	\$	2,500.00	
2374000000-N			Frame w/Grate and Hood 840.03 Type G	5	Each	\$	1,250.00	\$	6,250.00	
2549000000-E			2'-6" Concrete Curb and Gutter	950	LF	\$	60.00	\$	57,000.00	
2591000000-E			4" Concrete Sidewalk both sides	770	SY	\$	60.00	\$	46,200.00	
3030000000-E			Steel Beam Guardrail	50	LF	\$	30.00	\$	1,500.00	
505000000 L		1 302	Steel Bealii Guararan	30	1/1	Ψ	50.00	Ψ	1,500.00	

City of Concord Lincoln Street Bridge Replacement Opinion of Probable Construction Cost

3150000000-N	062	Additional Guardrail Posts	5	Each	\$	50.00	\$	250.00
32150000000-N			4	Each	\$	2,500.00	\$	10,000.00
		Guardrail Anchor Units, Type III	4		_		\$	
3288000000-N		Guardrail End Units, Type TL-2	= 1	Each	\$	3,500.00		14,000.00
3569000000-Е		Barbed Wire Fence Reset	180	LF	\$	25.00	\$	4,500.00
3628000000-E		Plain Rip Rap, Class I	30	Ton	\$	70.00	\$	2,100.00
3642000000-E		Plain Rip Rap, Class A	5	Ton	\$	60.00	\$	300.00
3649000000-Е		Plain Rip Rap, Class B	40	Ton	\$	65.00	\$	2,600.00
3651000000-Е		Boulders	75	Ton	\$	150.00	\$	11,250.00
3656000000-Е		Geotextile for Drainage	985	SY	\$	4.00	\$	3,940.00
4025000000-Е		CONTRACTOR FURNISHED, TYPE D SIGN	35.0	SF	\$	30.00	\$	1,050.00
4025000000-Е		CONTRACTOR FURNISHED, TYPE E SIGN	28	SF	\$	30.00	\$	825.00
4072000000-Е		SUPPORTS, 3-LB STEEL U-CHANNEL	250	LF	\$	10.00	\$	2,500.00
4096000000-N		SIGN ERECTION, TYPE D	2	EA	\$	300.00	\$	600.00
4102000000-N		SIGN ERECTION, TYPE E	5	EA	\$	200.00	\$	1,000.00
4116100000-N	904	SIGN ERECTION, RELOCATE TYPE E (GROUND MO	3	EA	\$	250.00	\$	750.00
4155000000-N	907	DISPOSAL OF SIGN SYSTEM, U-CHANNEL	12	EA	\$	20.00	\$	240.00
4192000000-N		DISPOSAL OF SUPPORT, U-CHANNEL	2	EA	\$	15.00	\$	30.00
4685000000-Е	1205	THERMOPLASTIC (4", 90 MILS)	2,000	LF	\$	1.50	\$	3,000.00
4900000000-N	1251	PERMANENT RAISED PAVEMENT MARKERS	10	EA	\$	15.00	\$	150.00
600000000-Е	1605	TEMPORARY SILT FENCE	1,625	LF	\$	2.50	\$	4,062.50
6006000000-Е	1610	EROSION CONTROL STONE, CLASS A	90	TON	\$	55.00	\$	4,950.00
6009000000-Е		EROSION CONTROL STONE, CLASS B	135	TON	\$	50.00	\$	6,750.00
6012000000-Е		SEDIMENT CONTROL STONE	290	TON	\$	45.00	\$	13,050.00
6015000000-E		TEMPORARY MULCHING	1	ACR	\$	950.00	\$	950.00
6018000000-E		SEED FOR TEMPORARY SEEDING	100	LB	\$	3.75	\$	375.00
6021000000-E		FERTILIZER FOR TEMPORARY SEEDING	0.5	TON	\$	1,000.00	\$	500.00
6029000000-E		SAFETY FENCE	320	LF	\$	2.50	\$	800.00
6030000000-E		SILT EXCAVATION	220	CY	\$	4.75	\$	1,045.00
6036000000-E		MATTING FOR EROSION CONTROL	7,570	SY	\$	1.60	\$	12,112.00
6037000000-E		COIR FIBER MAT	100	SY	\$	5.75	\$	575.00
6042000000-E		1/4" HARDWARE CLOTH	315	LF	\$	5.50	\$	1,732.50
6070000000-N		SPECIAL STILLING BASINS	10	EA	\$	900.00	\$	9,000.00
6071002000-E		Flocculant	25	LB	\$	7.00	\$	175.00
6084000000-E		SEEDING AND MULCHING	3	ACR	\$	2,250.00	\$	6,750.00
6087000000 E		MOWING	0.5	ACR	\$	160.00	\$	80.00
6093000000-E		SEED FOR REPAIR SEEDING	50		\$	8.00	\$	400.00
6096000000-E		SEED FOR SUPPLEMENTAL SEEDING	50	LB	\$	6.00	\$	300.00
6108000000-E		FERTILIZER TOPDRESSING	0.5		\$	1,100.00	\$	550.00
6111000000-E		IMPERVIOUS DIKE	195	LF	\$	190.00	\$	37,050.00
6114500000-E		SPECIALIZED HAND MOWING		MHR	\$	125.00	\$	1,250.00
6117000000-N		RESPONSE FOR EROSION CONTROL	13	EA	\$	190.00	\$	2,470.00
6117500000-N		CONCRETE WASHOUT STRUCTURE		EA	_	1,100.00	\$	2,470.00
612300000-N		REFORESTATION	1.0	ACR	\$ \$	3,500.00	\$	3,500.00
0123000000-E	1070	REFORESTATION	1.0	ACK	Ф	3,300.00	Þ	3,300.00
 		Standardo			\vdash			
9021000000 NT		Structures Removed of Eviating Structure at 12+82-50	1	IC	Φ	50,000,00	ď	50,000,00
8021000000-N		Removal of Existing Structure at 13+82.50	112	LS	\$	50,000.00	\$	50,000.00
8105520000-E		3'-0" Drilled Piers in Soil	112	LF	\$	1,400.00	\$	156,800.00
8105620000-E		3'-0" Drilled Piers Not in Soil	52	LF	\$	1,600.00	\$	83,200.00
8115000000-N		CSL Testing	2	Each	\$	3,000.00	\$	6,000.00
8121000000-N		Unclassified Structure Excavation	1	LS	\$	8,000.00	\$	8,000.00
8182000000-E		Class A Concrete	119	CY	\$	1,150.00	\$	136,850.00
8210000000-N	422	Bridge Approach Slabs	1	LS	\$	48,000.00	\$	48,000.00

City of Concord Lincoln Street Bridge Replacement Opinion of Probable Construction Cost

8217000000-E	425	Reinforcing Steel	38,833	LBS	\$ 1.50	\$ 58,249.50
8238000000-Е	425	Spiral Column Reinforcing Steel	4,422	LBS	\$ 2.85	\$ 12,602.70
8328200000-Е	450	Pile Driving Setup for HP 12x53 Steel Piles	20	Each	\$ 1,300.00	\$ 26,000.00
8364000000-E	450	HP 12x53 Steel Piles	400	LF	\$ 75.00	\$ 30,000.00
8391000000-N	450	Steel Pile Points	10	Each	\$ 270.00	\$ 2,700.00
8475000000-E	460	Two Bar Metal Rail	256	LF	\$ 125.00	\$ 31,937.50
8517000000-E	460	1'-2"x3'-4 1/4" Concrete Parapet	270.00	LF	\$ 120.00	\$ 32,400.00
8608000000-E	876	Rip Rap Class II (2'-0" Thick)	622.00	Ton	\$ 60.00	\$ 37,320.00
8622000000-E	876	Geotextile for Drainage	692.00	SY	\$ 3.75	\$ 2,595.00
8657000000-N	430	Elastomeric Bearings	1.00	LS	\$ 30,600.00	\$ 30,600.00
8762000000-E	430	3'-0"x1'-9" Prestressed Concrete Cored Slabs	2,430.00	LF	\$ 205.00	\$ 498,150.00
		Utility Construction (estimated, to be determined by Ci	<u>ty)</u>			
		Plug Existing 24" Sewer Pipe for Abandonment	4	Each	\$ 100.00	\$ 400.00
		Remove Existing 24" Sewer Pipe	65	LF	\$ 50.00	\$ 3,250.00
		Remove Existing Sewer Manhole	1	Each	\$ 2,500.00	\$ 2,500.00
		Concrete Encasement for Existing 42" Sewer Pipe	50	LF	\$ 1,000.00	\$ 50,000.00
		Adjust Existing Sewer Manhole Rim ~1FT	1	Each	\$ 600.00	\$ 600.00
		Adjust Existing Sewer Manhole Rim ~4FT	1	Each	\$ 3,000.00	\$ 3,000.00
				·		